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Abstract: This research employs the fuzzy-set quali-
tative comparative analysis (fsQCA) method to inves-
tigate the configurations of multiple factors influencing 
scientific concept learning, including augmented real-
ity (AR) technology, the concept map (CM) strategy 
and individual differences (eg, prior knowledge, ex-
perience and attitudes). A quasi-experiment was 
conducted with 194 seventh-grade students divided 
into four groups: AR and CM (N = 52), AR and non-
CM (N = 51), non-AR and CM (N = 40), non-AR and 
non-CM (N = 51). These students participated in a 
science lesson on ‘The structure of peach blossom’. 
This study represents students' science learning out-
comes by measuring their academic performance 
and cognitive load. The fsQCA results reveal that: (1) 
factors influencing students' academic performance 
and cognitive load are interdependent, and a single 
factor cannot constitute a necessary condition for 
learning outcomes; (2) multiple pathways can lead 
to the same learning outcome, challenging the no-
tion of a singular best path derived from traditional 
analysis methods; (3) the configurations of good and 
poor learning outcomes exhibit asymmetry. For ex-
ample, high prior knowledge exists in both configura-
tions leading to good and poor learning outcomes, 
depending on how other conditions are combined.

K E Y W O R D S
augmented reality, concept map strategy, fsQCA, individual 
differences, science education

www.wileyonlinelibrary.com/journal/bjet
https://orcid.org/0000-0003-3507-0941
mailto:
https://orcid.org/0000-0001-6845-0065
mailto:liuqtang@mail.ccnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbjet.13499&domain=pdf&date_stamp=2024-06-25


2  |      MA et al.

INTRODUCTION

K-12 science education is a prominent focus in the field of education, as it plays a pivotal 
role in nurturing students' scientific literacy and contributing to the nation's innovation ca-
pacity (Cai et al., 2022; Reiss, 2020). However, certain scientific concepts and phenomena, 
such as magnetic lines of induction (Liu et al., 2021) or microscopic entities like molecules 
and atoms (Cai et al., 2014; Liu et al., 2023), prove challenging or impossible to observe 
and perceive within traditional learning environments. Consequently, students often develop 
misconceptions and possess a fragmented, incoherent knowledge base in specific scientific 
areas.

Recent efforts by researchers aim to enhance science learning among students. Some 
studies affirm the advantages of employing augmented reality (AR) technology in enhancing 
students' comprehension of scientific knowledge (Sahin & Yilmaz, 2020), fostering concep-
tual change (Kennedy et al., 2021; Yoon et al., 2017) and cultivating inquiry skills (Kyza & 
Georgiou, 2019). Other research investigates the positive impacts of fine-grained process-
ing strategies on science learning. For instance, a meta-analysis by Schroeder et al. (2018) 
indicates that the concept map (CM) strategy proves more effective for STEM learning 
compared to other instructional methods. Especially, the use of concept map strategy can 
effectively reduce the extraneous processing to generate and interpret the visuospatial in-
formation, thereby reducing overall cognitive load.

Nevertheless, the prevailing perspective asserts that educational media and pedagog-
ical strategies are interconnected, mutually influencing students' learning (Clark,  1994; 

Practitioner notes

What is already known about this topic
•	 Augmented reality proves to be a useful technological tool for improving science 

learning.
•	 The concept map can guide students to describe the relationships between con-

cepts and make a connection between new knowledge and existing knowledge 
structures.

•	 Individual differences have been emphasized as essential external factors in con-
trolling the effectiveness of learning.

What this paper adds
•	 This study innovatively employed the fsQCA analysis method to reveal the com-

plex phenomenon of the scientific concept learning process at a fine-grained level.
•	 This study discussed how individual differences interact with AR and concept map 

strategy to influence scientific concept learning.

Implications for practice and/or policy
•	 No single factor present or absent is necessary for learning outcomes, but the 

combinations of AR and concept map strategy always obtain satisfactory learning 
outcomes.

•	 There are multiple pathways to achieving good learning outcomes rather than a 
single optimal solution.

•	 The implementation of educational interventions should fully consider students' 
individual differences, such as prior knowledge, experience and attitudes.
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Sung & Mayer, 2013). Thus, the effectiveness of AR in promoting productive science learn-
ing is believed to depend on its orchestration with pedagogical strategies (Makransky & 
Petersen, 2021). Additionally, individual differences may interact with the learning environ-
ment, influencing learning outcomes (Skuballa et  al.,  2019). For instance, students' prior 
knowledge (Liu et al., 2019), attitudes (Tsivitanidou et al., 2021) and technical operation ex-
perience (Chen & Wang, 2015) have been shown to account for different learning outcomes 
within the same learning environment.

While existing research has explored critical factors impacting science learning, little is 
known about how the interplay among multiple factors contributes to good or poor learning 
outcomes (Ling et al., 2021). Previous studies primarily utilized quantitative analysis meth-
ods (eg, t-test, multiple regression analysis, ANOVA) to examine the net effect of a single 
variable (Sahin & Yilmaz, 2020) or the interactive effect of two variables (Liu et al., 2019) on 
science learning, offering a single solution to explain learning outcomes. However, these 
analysis methods face challenges in interpreting three-way or higher-order interactions, 
making complex theoretical arguments difficult to test (Douglas et al., 2020).

In this study, we employ fuzzy-set qualitative comparative analysis (fsQCA) to address 
these research gaps. Specifically, we review critical factors proven to significantly influence 
scientific concept learning in existing literature. Based on complexity theory and qualitative 
comparative analysis (Fiss, 2007; Mason, 2008), we construct a conceptual model delin-
eating the factors influencing student academic performance and cognitive load. This study 
aims to clarify how the combination of AR technology, the CM strategy and individual differ-
ences influences learning outcomes, encompassing academic performance and cognitive 
load. It provides a theoretical framework for comprehending the formation mechanism of 
scientific concept learning. Moreover, our findings provide actionable insights to enhance 
effective teaching and learning in K-12 science education.

LITERATURE REVIEW

Scientific concept learning and its influencing factors

Scientific concepts play a pivotal role in advancing students' science learning (National 
Research Council, NRC, 2012). However, various factors hinder students' performance in 
grasping scientific concepts, such as unobservable phenomena and technical limitations 
(Wu et al., 2013; Xu et al., 2022). These practical challenges impede novices from consist-
ently acquiring and organizing knowledge systems centred on scientific concepts, leading 
to fragmented understanding (NRC, 2012). Therefore, to improve the quality of students' 
scientific concept learning, it is imperative to identify the multiple factors that significantly 
affect learning of scientific concepts.

Based on the Contextual Model of Learning (CML) introduced by Falk and Dierking (2000), 
this study sorts out the key personal and physical factors that may affect scientific con-
cept learning. Concerning physical factors, we concentrate on technologies and strategies 
that effectively support scientific concept learning. As articulated in the Framework for K-12 
Science Education (NRC,  2012), students are encouraged to ‘use computer simulations 
or simulations developed with simple simulation tools as a tool for understanding and in-
vestigating aspects of a system, particularly those not readily visible to the naked eye’ (p. 
58). Thus, researchers suggest that AR technology can seamlessly integrate vivid virtual 
information with the real-world environment (Azuma, 1997), effectively conveying complex 
scientific information, explaining abstract concepts or demonstrating invisible phenomena 
in a more understandable manner (Cai et al., 2022; Liu et al., 2021; Sahin & Yilmaz, 2020; 
Yoon et al., 2017). Additionally, the real-time interactive feature of AR provides students with 
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opportunities for hands-on inquiry (Yu et al., 2022), fostering a more immersive and embod-
ied learning experience (Conley et al., 2020).

However, some studies do not support such positive effects (eg, Lai & Chang,  2021; 
Thees et al., 2020). As highlighted in some research (Akçayır & Akçayır, 2017; Radu, 2014; 
Wu et al., 2013), the reasons for AR not delivering anticipated educational effects can be 
attributed to: (1) the lack of necessary learning scaffolds in the AR learning process, leading 
students to feel confused and overwhelmed. (2) Students without prior AR experience may 
invest additional time and effort in operational aspects rather than focusing on the learning 
content.

Recognizing that AR alone may not guarantee optimal learning outcomes, it becomes 
imperative to integrate suitable instructional strategies into the AR learning process (Wu 
et al., 2013). Recent evidence supports the effectiveness of the concept map strategy (CM) 
in promoting students' in-depth semantic processing of learning materials (Chen et al., 2016; 
Chou et al., 2022; Liang et al., 2021; Novak & Cañas, 2007). In the realm of science learning, 
the creation or utilization of concept maps guides students in identifying essential informa-
tion, discerning hierarchical relationships among scientific concepts and integrating new 
knowledge into their existing structures to construct a coherent system of scientific concepts 
(Chen et al., 2016; Schroeder et al., 2018). However, it is important to note that the concept 
map strategy is not universally effective (Haugwitz et al., 2010; Li et al., 2021). In a particular 
study, the educational effectiveness of the concept map strategy was observed only in stu-
dents with low cognitive ability (Haugwitz et al., 2010). To some extent, these inconsistent 
findings can be attributed to the intricate interplay between instructional strategies and indi-
viduals' aptitudes (Amadieu et al., 2009).

The studies mentioned highlight the importance of considering individual differences when 
assessing the educational effectiveness of AR and the concept map strategy. Established 
research suggests that students' prior experience with AR can impact their learning per-
formance in an AR environment (Akçayır & Akçayır, 2017; Chen & Wang, 2015). Similarly, 
the effectiveness of the concept map strategy is influenced by students' prior knowledge 
(Haugwitz et  al.,  2010). Additionally, a strong correlation has been identified between 
students' attitudes towards science and their performance in science learning (Osborne 
et al., 2003; Tsivitanidou et al., 2021). Therefore, this study places particular emphasis on 
three individual characteristics in science learning: prior knowledge, prior experience with 
AR and attitudes towards science.

Prior knowledge (PK) plays a crucial role in influencing students' science learning (Liu 
et al., 2019). Numerous studies have demonstrated that students with high prior knowledge 
are better equipped to apply new knowledge in problem solving compared to peers with 
lower prior knowledge (Chen et al., 2014). Interestingly, students with low prior knowledge 
can benefit from certain educational interventions, as found by Cai et  al.  (2014), Conley 
et al. (2020) and Lin et al. (2015) in the AR learning environment. Similar conclusion was 
observed in studies examining the effectiveness of the concept map strategy (Haugwitz 
et  al.,  2010), where students with low prior knowledge relied more on concept maps for 
cognitive support.

Attitudes towards science (ATS) represent a complex system of cognitive and affective 
dispositions influencing students' ongoing interest in scientific issues (Kind et  al.,  2007). 
Research consistently indicates a positive association between students' attitudes towards 
science and their achievements in science (Nuutila et al., 2018; Tsivitanidou et al., 2021). 
Positive attitudes correlate with successful learning outcomes, while negative attitudes may 
diminish the effectiveness of educational interventions (Acarli & Acarli, 2020).

Students' technology proficiency influences their self-efficacy and technology acceptance, 
thereby impacting their learning performance (Cázares, 2010). Specifically, students' prior 
experience with AR (PEAR) directly affects their learning experience in AR environments 
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(Chen & Wang, 2015). For example, Dunleavy et al. (2009) found that some students expe-
rienced higher cognitive load due to unfamiliarity with AR technology. However, studies on 
the impact of students' prior experience with AR on learning are relatively scarce, limiting 
definitive conclusions.

Cognitive load theory

Facilitating effective learning in a multimedia environment requires a comprehensive un-
derstanding of the learner's cognitive structure and how it interacts with the learning en-
vironment (Kirschner et  al.,  2011). Cognitive load theory (CLT, Sweller et  al.,  1998; Van 
Merrienboer & Sweller, 2005) provides a framework to explain how individual differences 
and educational interventions influence students' working memory and cognitive process. 
The CLT categorizes cognitive load into intrinsic, extraneous and germane cognitive load, 
collectively constituting a student's total cognitive load (Sweller et al., 2019). Intrinsic cogni-
tive load (ICL) is determined by the complexity of the learning materials and the student's 
prior knowledge. Extraneous cognitive load (ECL) results from inappropriate instructional 
designs, leading to excess information processing. Germane cognitive load (GCL) involves 
working memory resources handling intrinsic rather than extraneous cognitive load, thus 
facilitating learning (Leahy & Sweller, 2016).

The positive impact of AR on learning outcomes lies in its capability to reduce students' 
extraneous cognitive load. AR can superimpose virtual information on real objects, prevent-
ing cognitive resource wastage and fostering information processing in the AR learning en-
vironment (Thees et al., 2020; Yu et al., 2022). For example, Thees et al. (2020) developed 
an AR application based on spatial and temporal contiguity principles, which could display 
real-time measurement data form heat conduction experiments through AR smartglasses. 
In contrast to traditional labs where students use a handheld thermal imaging camera to ob-
serve a metal rod and manually transmit temperature distribution still images to a computer, 
AR-assisted labs can reduce students' extraneous cognitive load. Nevertheless, contradic-
tory conclusions were found in some studies (Altmeyer et al., 2020; Cheng & Tsai, 2013). 
For instance, Altmeyer et al. (2020) found that AR-supported lab work did not lead to less 
extraneous cognitive load than non-AR lab work as assumed. This research suggests that 
the primary factor influencing students' extraneous cognitive load is not the technology itself, 
but the way the AR learning environment is designed. In conclusion, there is still a lack of 
conclusive empirical evidence to confirm positive impact of AR on students' cognitive load, 
and some individual differences may affect how cognitive load is generated and handled 
(Ibáñez & Delgado-Kloos, 2018).

The concept map strategy affects cognitive load in two ways. On the one hand, con-
cept maps present knowledge structures in a simpler grammatical structure, requiring fewer 
extraneous cognitive resources for interpretation (Schroeder et  al.,  2018). On the other 
hand, the construction of concept maps prompts students to organize learning materials 
into hierarchical knowledge structures, enhancing their germane cognitive load (Schroeder 
et al., 2018).

Students' prior knowledge decides the level of their intrinsic cognitive load (Sweller 
et al., 2019). Generally speaking, students with high prior knowledge retain more domain 
knowledge in their long-term memories and possess complete conceptual structures. These 
students can apply their existing cognitive structures to organize highly interactive informa-
tion elements, thus reducing their intrinsic cognitive load (Ling et al., 2021). On the contrary, 
students with low prior knowledge usually have a higher intrinsic cognitive load, so it is 
possible to exceed their working memory capacity when the learning material is high in ele-
ment interactivity, thereby reducing the learning efficiency (Sweller et al., 2019). Although it 
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is commonly assumed that high prior knowledge is positively associated with good learning 
outcomes, some studies have found that the concept map strategy may help to prevent 
cognitive overload among students with lower prior knowledge, thereby resulting in more 
significant gains in knowledge (Haugwitz et al., 2010).

Limited studies have explored the correlation between students' learning attitudes and 
their cognitive load. Initial findings suggest that a positive learning attitude can result in a 
temporary increase in working memory capacity (Schnotz et al., 2009). According to cogni-
tive load theory, the enhanced working memory capacity can stimulate students to process 
learning materials more profoundly, consequently elevating students' germane cognitive 
load (Bannert, 2002; Mutlu-Bayraktar et al., 2019).

Students' prior experience with AR is linked to their extraneous cognitive load. Specifically, 
a lack of experience in AR operations often leads to an increased extraneous cognitive load 
(Dunleavy et al., 2009). This is attributed to the fact that AR learning environments involve 
interaction procedures unrelated to the intrinsic complexity of the task, such as scanning AR 
markers. For students lacking AR operation experience, these interaction procedures de-
mand more time and effort, imposing additional non-productive demands on working mem-
ory (Janssen & Kirschner, 2020).

Qualitative comparative analysis

From the aforementioned review, it is evident that science learning is a complex process, 
and various factors collectively impact students' academic outcomes and cognitive load. 
However, traditional data analysis methods (eg, t-test, multiple regression analysis, ANOVA) 
face limitations in revealing this intricate phenomenon. On the one hand, traditional quanti-
tative analysis methods rely on symmetric tests, assuming that a predictor variable is both 
necessary and sufficient for the outcome (El Sawy et al., 2010; Woodside, 2013). However, 
the actual learning process is typically asymmetric, where AR might lead to success for 
some but failure for others due to individual differences. Therefore, failure cannot be simplis-
tically viewed as the opposite of success (Ling et al., 2021; Ragin, 2008). On the other hand, 
traditional quantitative analysis methods overlook dependencies between multiple variables 
(Douglas et al., 2020). Given the complexity of the learning process and the inherent limita-
tions of traditional quantitative analysis methods, exploring new educational data analysis 
approaches is crucial to unveil the dependencies among multiple factors influencing science 
learning.

Recently, the Qualitative Comparative Analysis (QCA) method has been introduced to the 
education domain (Ling et al., 2021; Nistor et al., 2019). The theoretical foundation of QCA 
is rooted in complexity and configuration theory, asserting that diverse variables shaping 
outcomes are interdependent, and the impact of a specific variable depends on its combined 
relationship with others, known as configurations (Fiss, 2011; Urry, 2005).

The analytical foundation of QCA is grounded in set theory, which conceptualizes con-
ditions and outcomes as sets (Fiss, 2011; Ragin, 2008). Through the analysis of necessity 
and sufficiency, QCA can unveil complex causal relationship between condition sets and 
outcome sets (Douglas et al., 2020), such as equifinality (ie, multiple paths or configurations 
can lead to the same outcome), conjuncture (ie, various factors jointly influencing the out-
come) and asymmetry (ie, causes leading to a particular outcome might be different from 
causes that lead to the absence of the same outcome).

QCA comes in three variants: crisp-set QCA (csQCA), multi-value QCA (mvQCA) and 
fuzzy-set QCA (fsQCA). fsQCA overcomes the limitations of both csQCA and mvQCA, par-
ticularly excelling in dealing with asymmetric educational data and continuous variables 
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(Rihoux & Ragin, 2008). This study opts for fsQCA due to its applicability to students' knowl-
edge test scores, a type of continuous variable.

The current study

Using the fsQCA method, the main purpose of this study is to examine the necessity and 
sufficiency relationships between condition sets (AR, concept map strategy, prior knowl-
edge, attitude towards science, prior experience with AR) and outcome sets (academic per-
formance and cognitive load). Specifically, we aim to address the following three questions:

1.	 Is there a necessary condition that leads to good/poor academic performance and 
low/high cognitive load among AR, CM, prior knowledge, attitude towards science 
and prior experience with AR?

2.	What are the specific combinations of AR, CM, prior knowledge, attitude towards science 
and prior experience with AR that can sufficiently cause either good or poor academic 
performance?

3.	What are the specific combinations of AR, CM, prior knowledge, attitude towards science 
and prior experience with AR that can sufficiently cause either low or high cognitive load?

METHOD

The procedure of fsQCA

The procedure of fsQCA consists of the following seven steps:

1.	 Identify the causal conditions and outcomes. Key variables can be determined through 
either deductive or inductive approaches (Ketchen et  al.,  1993). It is advisable to 
avoid selecting an excessive number of conditions, as K conditions will result in 2K 
possible configurations.

2.	Select cases. The selected cases should demonstrate both comparability and maximum 
heterogeneity (Ling et al., 2021; Rihoux & Ragin, 2008).

3.	Data calibration. It is necessary to convert variable values into fuzzy membership scores 
within the 0 to 1 range, thus establishing a fuzzy set. For binary variables, fuzzy member-
ship scores can straightforwardly be assigned as 0 or 1. However, for continuous vari-
ables, it becomes essential to delineate three thresholds: full membership, the crossover 
point and full non-membership. Commonly employed calibration thresholds in the litera-
ture include 95%, 50%, 5%, or 90%, 50%, 10% (Ragin, 2008).

4.	Necessary condition analysis. This step determines whether a condition is indispensa-
ble for the occurrence of a particular outcome, indicating that the outcome cannot hap-
pen without this condition. A key metric for gauging necessary conditions is consistency. 
Typically, the minimum accepted consistency score for identifying necessary conditions is 
0.9 (Schneider & Wagemann, 2012).

5.	Truth table analysis and sufficiency condition analysis. This step involves analysing 
whether a configuration formed by multiple antecedent conditions is a sufficient condition 
for an outcome (Pappas & Woodside, 2021). The initial truth table outlines all possible 
configurations, providing information on the frequency (ie, the number of cases for each 
configuration), the raw consistency and the proportional reduction in inconsistency (PRI) 
score (Du & Kim, 2021). It is essential to define relevant thresholds to identify configura-
tions meeting the criteria for sufficiency conditions. For example, setting the minimum 
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8  |      MA et al.

case frequency to 1 or 2, the raw consistency value to 0.75–0.8 (Pappas et al., 2019), and 
the PRI scores threshold to 0.65–0.75 (Pappas & Woodside, 2021).

6.	 Interpret the results of the configurations with the assistance of theoretical frameworks and 
practical research experience.

7.	 Robustness test. The results of fsQCA are sensitive and stochastic due to variations in the 
selection of calibration point thresholds, consistency thresholds and frequency thresholds 
during the fsQCA analysis process. Therefore, researchers have proposed robust testing 
methods for fsQCA results, including fine-tuning calibration thresholds, altering case fre-
quencies and adjusting consistency thresholds (Douglas et al., 2020; Ling et al., 2021).

The subsequent methods section primarily outlines the first two steps in the fsQCA pro-
cess: the selection of condition and outcome variables, and the selection of cases. Other 
steps, such as data calibration, analysis of necessity and sufficiency conditions, the inter-
pretation of fsQCA results and robustness tests, will be presented in the results section.

Identify the causal conditions and outcomes

We determined the causal conditions and outcomes based on the literature review. The con-
ceptual model of this study is presented in a Venn diagram (Figure 1) that illustrates seven 
sets of constructs and their interconnections. Among them, academic performance and 
cognitive load are the outcome variables, while AR (Liu et al., 2021), CM (Chou et al., 2022), 
prior knowledge (Liu et al., 2019), attitude towards science (Kind et al., 2007) and prior ex-
perience with AR (Chen & Wang, 2015) are the causal conditions. The intersections in the 
diagram represent configurations of factors, which are higher-level interactions, and dem-
onstrate the instances where one factor is present in conjunction with the others (Pappas 
et al., 2019).

Participants/cases selection

The study, conducted at a junior high school in central China, involved 194 seventh-grade 
students (aged 12–14) from four parallel classes as experimental subjects, comprising 109 

F I G U R E  1   Conceptual model of scientific concept learning.

CM 

Causal 

condition: AR/ 

non-AR

Causal condition: 

PEAR (Prior 

experience with AR)
Causal condition: 

PK (Prior 

knowledge)

Causal 

condition:  CM 

/ non-
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       |  9WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

males and 85 females. The students from these four classes were divided into four groups 
according to whether learning with AR and CM: group1 (AR and CM, N = 52, including 28 
males and 24 females), group2 (AR and non-CM, N = 51, including 30 males and 21 fe-
males), group3 (non-AR and CM, N = 40, including 24 males and 16 females) and group4 
(non-AR and non-CM, N = 51, including 27 males and 24 females). Before the experiment, 
each participant signed an informed consent representing that they knew the purpose and 
process of the study. They were told their participation in the research was voluntary, and 
they could opt out of the experiment anytime.

For case selection, we follow the two criteria mentioned above. First, participants in this 
study were from four parallel classes of the same grade in the same school. These students 
were taught by the same biology teacher, which ensured that the selected cases were over-
all homogeneity. Second, in a recent biology exam, about 20% of students scored above 
90, and about 10% scored below 60 (the total score was 100). It implied that large diversity 
exists within these cases, reflecting internal differences as much as possible and containing 
all possible results.

Intervention

The design of AR learning tool

The structure of plants holds significant importance in their growth and reproduction, consti-
tuting an essential topic in life science. Aligned with the Chinese junior high school biology 
course syllabus, this study establishes specific learning objectives: (1) comprehending the 
external and internal structures and functions of peach blossoms; (2) establishing hierarchi-
cal relationships between different structures and concepts; (3) understanding the pivotal 
role of pistil and stamen in plant reproduction.

To achieve the learning objectives and deliver the AR experience, Unity 3D software 
(2020.1.17) and Vuforia Engine were used to design and develop the AR learning tool, which 
included three learning modules:

The structure of the peach blossom
In this module (Figure 2a), students can scan the AR marker via the mobile device's cam-
era, and the 3D model of the peach blossom will be presented on the screen. Students can 
rotate the AR marker freely to observe the overall external structure of the peach blossom. 
Furthermore, by clicking on the ‘Split’ button, students can separate the peach blossom to 
examine the details of each structure.

Observation of the stamen
The module (Figure 2b) displays the structure of the stamen, allowing students to use twee-
zers to pick up pollen and observe the internal structure of the pollen.

Observation of the pistil
This module (Figure 2c) guides students to manipulate the blade to dissect the ovary, sim-
ulating dissecting the ovary in a real-world experiment, thereby providing students with 
hands-on inquiry activities.

The illustration in Figure 3 portrays students in the AR group utilizing AR tools to explore the 
‘The Structure of Peach Blossoms’ in the classroom. As students position the AR marker in front 
of the tablet's camera, a 3D model of a peach blossom appears on the screen. Students can 
adjust the position and angle of the 3D model by manipulating the AR marker in their hands.
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10  |      MA et al.

For the non-AR group, they will complete the learning tasks using the textbook (Figure 4), 
which contains the same learning content as in the AR learning tool, but in the form of text 
and pictures.

The design of the concept map

The concept map stimulates students' deeper processing of learning materials. Specifically, 
the concept map should provide an anchoring structure that triggers students to translate and 
integrate new concepts into their prior knowledge networks. Therefore, this study adopted a 

F I G U R E  2   (a) The structure of the peach blossom. (b) Observation of the stamen. (c) Observation of the 
pistil.
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       |  11WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

filling-in-based concept map. Two biology teachers co-designed a template for the concept 
map (Figure 5), and students were expected to fill in the key concepts based on the clues 
provided by the concept map. Notably, the hierarchical structure of the concept map cor-
responds to the learning modules of the AR learning tool (ie, the external structure of the 
peach blossom—the pistil and stamen—and the internal structure of the peach blossom).

In the case of the non-CM group, they are given a worksheet (Figure 6), which does not 
present the hierarchical relationship between concepts like the concept map.

F I G U R E  3   Students in the AR group were scanning the AR marker, and a 3D model of a peach blossom 
was presented on the screen.

F I G U R E  4   Learning materials used in the non-AR group.

Text Description
By observation, it can be seen that a peach 

flower is composed of a stalk, receptacle, sepals, 

petals, pistils, stamen, etc. The main structures of 

a flower are the stamen and pistil, with pollen 

inside the anthers of the stamen and ovules 

inside the ovary of the pistil.

stalk

receptacle

sepal

stamen 

petal

pistil
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12  |      MA et al.

Treatment conditions

We designed inquiry-based learning activities based on previous studies (Chiang et al., 2014; 
Li et al., 2010). First, the teacher created a problematic situation, asking questions such as 
‘What is the function of each structure of the flower? How do flowers become fruits?’ to 
stimulate students' interest in the inquiry. Then, students worked in groups of 2–3 to conduct 

F I G U R E  6   The worksheet used in non-CM group.

What parts of the structure are included in the peach blossom

Stamens include ______ and ______, pollen has ______ and ______

The pistil includes ______, ______, and ______, the ovule has ______ and ______

F I G U R E  5   The concept map used in CM group.

Students names
Group name

The peach 

blossom

includes

includes

includes

includes

includes

petal

sepal

receptacle

stamen or

pistil

stalk
includes

includes

stamens

pistils

includes

includes

includes

includes

includes

anther

filament

stigma

style

ovary

have

its surface
ovary wall

vegetative 

cells
inside there 

are

is wrapped 

in

germ cells

inside there 

are

ovule

egg cell

Concept map
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       |  13WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

collaborative inquiry learning activities. Specifically, group members learned about ‘the 
structure of peach blossoms’ through the AR learning tool or the textbook (ie, non-AR) and 
filled out the concept map or the worksheet (ie, non-CM), with the teacher acting as a guide 
and technical supporter. Finally, the teacher led the class to summarize and reflect on what 
they had learned and started a class discussion with the question, ‘Which part of the flower 
do you think is the most important and why?’

The following four treatment conditions were divided according to whether students 
learned with AR and CM.

AR and CM: In this treatment condition, each group shares a mobile device and com-
pletes three learning modules in the AR learning tool in sequence. Group members need 
to discuss and fill out the concept map during the learning process.
AR and non-CM: In this treatment condition, each group shares a mobile device and 
completes three learning modules of the AR learning tool in sequence. Group members 
are required to discuss and complete the worksheet.
Non-AR and CM: In this treatment condition, each group uses the textbook to learn about 
the structure of peach blossoms. Also, group members are required to discuss and com-
plete the concept map.
Non-AR and non-CM: In this treatment condition, each group uses the textbook to learn 
the structure of peach blossoms. Also, group members need to discuss and complete 
the worksheet.

Measuring instruments

Pre- and post-test

The items of pre-test and post-test were co-compiled by two biology teachers with over a dec-
ade of teaching experience, which aligned with the Chinese secondary school biology course 
syllabus. The pre-test aimed to assess students' prior related scientific knowledge with five 
multiple-choice questions, one true or false question and eight fill-in-blank questions (1 point for 
each item, 14 points in total). The KR-20 score of pre-test (Kuder & Richardson, 1937) was 0.75, 
implying a reasonable internal consistency reliability. An example of a multiple choice question 
is ‘Which part of the peach blossom can produce pollen? A: Stamens; B. Pistil: C. Petals; D. 
Receptacle.’ An example of the true or false question is ‘The stamen is not as important as the 
pistil because it has no relevance to the production of the fruit.’ An example of a fill-in-blank 
question is ‘In a peach blossom, the most dominant structures are ______ and ______.’

The post-test aimed to examine students' academic performance after they completed 
the learning tasks. The post-test adopted the same items as the pre-test and added five 
more multiple-choice questions (2 points for each item). The total points of the post-test 
were 24, and the KR-20 score was 0.72.

Cognitive load scale

The cognitive load scale was revised from the scale designed by Paas and Van 
Merriënboer (1993), including mental load and mental effort. The two items are ‘How dif-
ficult do you think it was to learn in this lesson?’ and ‘How much effort do you think you 
devoted to the learning process in this lesson?’ The scale employs the 7-point Likert rating 
scheme, where seven indicates high mental load and high mental effort, and one represents 
low mental load and low mental effort. We only adjusted the item descriptions to align with 
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14  |      MA et al.

the focus of this study and did not make substantive changes to the scale. In this study, the 
scale's internal consistency was assessed as acceptable (Cronbach's alpha = 0.71).

Attitudes towards science scale

The scale of attitudes towards science was revised from the scale developed by Summers and 
Abd-El-Khalick (2018). It consists of three items with the 5-point Likert scale, where five refers 
to strongly agree, and one represents strongly disagree. A sample item states: ‘Knowledge 
learned in science class is important in daily life.’ The Cronbach's alpha value assessed in the 
current study was 0.81, indicating the scale's internal consistency was acceptable.

Prior experience with AR scale

The scale of prior experience with AR was modified from the ICT knowledge and skills sub-
category of the ICT competence inventory developed by Chen and Wang (2015). It consists 
of five items with the 5-point Likert scale, where five refers to strongly agree, and one repre-
sents strongly disagree. A sample item states: ‘I am familiar with the basic operation of AR 
application.’ Similarly, this study did not change the substantive content of the original scale, 
and only customized the description of the items to AR technology. In this study, the scale's 
internal consistency was assessed as acceptable (Cronbach's alpha = 0.80).

Procedure

The experimental procedure includes three stages: pre-test, intervention and post-test 
(Figure 7). Firstly, all students completed a pre-test before the experimental intervention. 
The pre-test assessed students' priori relevant scientific knowledge, attitudes towards sci-
ence and prior experience with AR. During the experimental intervention, four groups of 
students were engaged in inquiry-based learning activities about ‘the structure of peach 
blossoms’ under different learning conditions (ie, AR and CM, AR and non-CM, non-AR and 

F I G U R E  7   The experimental procedure.

Group 1

N=52

Group 2

N=51

Group 3

N=40

Group 4

N=51

Pre-knowledge test (PK)

Attitudes toward science (ATS)

Prior experience with AR (PEAR)

Learning with

AR and CM

Learning with

AR and non-

CM

Learning 

with non-AR

and CM

Learning 

with non-AR

and non-CM

Inquiry-based learning activities about

"the structure of peach blossoms"

Post-knowledge test 

Cognitive load scale

Pre-test

15 min

Intervention

60 min

Post-test

15 min
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       |  15WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

CM, Non-AR and non-CM). Following the intervention, all students were requested to finish 
a post-test, including the knowledge test and the cognitive load scale. The whole experiment 
lasted for two class hours (ie, 90 minutes). It is worth mentioning that, to control the influ-
ence of irrelevant factors, the teaching process and experimental environment in the four 
experimental conditions were kept consistent. Additionally, four groups were taught by the 
same teacher, who has more than ten years of middle school biology teaching experience. 
The teacher acted as both the guide of the teaching process and the technical supporter, 
providing guidance to students' collaborative inquiries during the learning process.

RESULTS

Data calibration

For binary variables, we assigned 1 to CM, AR, and 0 to non-CM, non-AR. For other vari-
ables, we set the value ranked 5%, 50% and 95% as the threshold for full membership, 
crossover point and full non-membership (Ragin, 2008). For instance, students scoring 9 
(top 5%) or higher in the pretest constituted full membership of the high prior knowledge set, 
while those scoring below 1.65 (bottom 5%) were considered full non-membership of the 
high prior knowledge set. Other students were categorized into a fuzzy set as they neither 
belonged to full membership nor full non-membership. Students scoring 4 (ranked 50%) 
were considered crossover points, indicating their maximum degree of fuzziness. Table 1 
provides a summary of data calibration.

Necessary condition analysis

In this study, we employed the fsQCA 4.1 software to conduct the necessary condi-
tion analysis. It is generally accepted that if the consistency of the condition is above 
0.9 (at least 0.85), this condition is considered necessary for the outcome (Schneider & 
Wagemann, 2012). Table 2 shows that there exists no necessary condition for the four 
outcomes.

TA B L E  1   Data calibration.

Conditions and outcomes Mean ± SD

Anchors

Full 
membership

Crossover 
point

Full non-
membership

CM / 1 / 0

AR / 1 / 0

ATS 3.94 ± 0.85 5 4 2.33

PEAR 3.65 ± 0.9 5 3.8 2

PK 4.84 ± 2.32 9 4 1.65

GAP 18.22 ± 4.62 23 20 9

LCL 3.19 ± 1.4 5 2.5 1

Abbreviations: AR, augmented reality; ATS, attitudes towards science; CM, concept map strategy; GAP, good academic 
performance; LCL, low cognitive load; PEAR, prior experience with AR; PK, prior knowledge.
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16  |      MA et al.

Truth table analysis and the sufficiency analysis

Firstly, the fsQCA 4.1 software will output the initial truth table. Secondly, following the thresh-
old criteria established in the existing literature (Rihoux & Ragin, 2008), the raw consistency 
threshold was set to 0.8, the frequency threshold was set to 2 and the PRI threshold was 
set to 0.75, retaining more than 80% of total cases. Finally, we obtained the results of the 
sufficiency analysis.

Results of fsQCA

The results of fsQCA for good academic performance and poor academic performance 
are shown in Table 3. First, the black circle (●) indicates the presence of this condition, the 
crossed-out circle (⊗) indicates the absence of this condition and the blank space indicates 
that the presence or absence of this condition is irrelevant to the outcome (Fiss,  2011). 
Second, consistency refers to the degree to which a configuration consistently results in 
the outcome, while overall solution consistency measures the degree to which all configu-
rations consistently result in the outcome (Rihoux & Ragin, 2008). Generally speaking, the 
consistency should be larger than 0.8. Third, the raw coverage refers to the proportion of 
the outcome that can be attributed to a specific configuration, whereas the unique coverage 
pertains to the proportion of the outcome that is solely accounted for by that configuration 
(Rihoux & Ragin, 2008). Finally, the overall solution coverage measures the proportion of 
all configuration coverage in the cases of the outcome, which is comparable with the R2 in 
regression analyses (Woodside, 2013).

Configurations of good academic performance

According to Table 3, the overall coverage of the three configurations (ie, A1, A2, A3) is 0.702, 
and the overall consistency is 0.864, indicating that 70.2% of the cases with good academic 
performance showed these three configurations of causal conditions (Woodside, 2013).

TA B L E  2   Results of the necessary condition analysis.

Causal conditions

Consistency

GAP PAP LCL HCL

CM 0.485 0.463 0.458 0.493

~CM 0.515 0.537 0.542 0.507

AR 0.591 0.467 0.424 0.656

~AR 0.409 0.533 0.576 0.344

ATS 0.681 0.641 0.679 0.635

~ATS 0.576 0.634 0.562 0.648

PEAR 0.623 0.662 0.636 0.624

~PEAR 0.659 0.641 0.613 0.669

PK 0.752 0.620 0.656 0.717

~PK 0.532 0.685 0.609 0.594

Abbreviations: AR, augmented reality; ATS, attitudes towards science; CM, concept map strategy; GAP, good academic 
performance; HCL, high cognitive load; LCL, low cognitive load; PAP, poor academic performance; PEAR, prior experience 
with AR; PK, prior knowledge; ~, the condition is absent.
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       |  17WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

First, configuration A1 shows that the combination of AR * CM * ATS * PK will achieve good 
academic performance. This configuration points to the top students in the class. They usu-
ally have positive attitudes towards science and solid prior knowledge, and they will get good 
academic performance if they can get support from both AR technology and the concept 
map strategy.

Second, configurations A2 (AR * CM * ATS * ~PEAR) and A3 (AR * CM * PK * ~PEAR) are 
similar. These students, despite limited AR operational experience, demonstrate positive at-
titudes towards science or possess high prior knowledge. These factors compensate for the 
lack of AR experience, enabling them to achieve satisfactory academic performance when 
supported by AR technology and the concept map strategy.

Configurations of poor academic performance

As shown in Table 3, three configurations (ie, B1, B2, B3) lead to PAP. The overall coverage 
is 0.771, and the overall consistency is 0.899, indicating that the three configurations cover 
77.1% of the outcome.

First, configuration B1 (~AR * CM * ~ATS * ~PK) implies that students are likely to achieve 
poor academic performance in science learning if they lack positive attitudes towards sci-
ence, do not have a strong foundation of prior knowledge and do not receive the assistance 
of AR, even if they are using the concept map strategy during their learning.

Second, configuration B2 indicates that if ~CM * ~AR * ATS * ~PK is satisfied, poor aca-
demic performance will be caused sufficiently. In this situation, even if students hold positive 
attitudes towards science but lack support from AR and CM in the learning environment and 
have low prior knowledge, they will still get poor academic performance.

Third, configuration B3 suggests that the combination of ~CM * AR * ~PEAR * ~PK will 
yield poor academic performance. Combined with Table  4, B3 (~CM * AR * ~PEAR * ~PK) 
can be regarded as a subset of D2 (~CM * AR * ~PK), implying that configuration B3 will 
cause a high cognitive load. In this case, if these students do not have rich AR experience, 
it will lead to poor academic performance.

TA B L E  3   Configurations causing good and poor academic performance.

Causal conditions

GAP PAP

A1 A2 A3 B1 B2 B3

CM ● ● ● ● ⊗ ⊗

AR ● ● ● ⊗ ⊗ ●

ATS ● ● ⊗ ●

PEAR ⊗ ⊗ ⊗

PK ● ● ⊗ ⊗ ⊗

Consistency 0.867 0.876 0.901 0.861 0.907 0.925

Raw coverage 0.413 0.366 0.315 0.514 0.482 0.349

Unique coverage 0.023 0.05 0.019 0.039 0.047 0.048

Overall consistency 0.864 0.899

Overall coverage 0.702 0.771

Note: A1, A2 and A3 represent the three configurations that cause good academic performance; B1, B2 and B3 represent 
the three configurations that cause poor academic performance. ● indicates the presence of this condition; ⊗ indicates the 
absence of this condition; the blank space indicates that the presence or absence of this condition is irrelevant to the outcome.
Abbreviations: AR, augmented reality; ATS, attitudes towards science; CM, concept map strategy; GAP, good academic 
performance; PAP, poor academic performance; PEAR, prior experience with AR; PK, prior knowledge.

 14678535, 0, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13499 by Peking U

niversity H
ealth, W

iley O
nline L

ibrary on [07/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18  |      MA et al.

Configurations of low cognitive load

Table 4 shows the results of fsQCA for low cognitive load. The overall coverage of 0.414 
suggests that the three configurations (ie, C1, C2, C3) account for 41.4% of the cases in 
low cognitive load. The overall consistency (0.804) exceeds the accepted threshold of 0.80.

First, configuration C1 is the same as A1; as long as CM * AR * ATS * PK is satisfied, low 
cognitive load and good academic performance would be caused sufficiently at the same 
time, regardless of students' prior Experience with AR. This result demonstrates that stu-
dents with positive attitudes towards science and solid prior knowledge will obtain low cog-
nitive load and good academic performance if they utilize the AR learning tool to illustrate 
the internal and external structure of peach blossoms and get the aid of the concept map 
strategy to make connections between scientific concepts.

Second, configuration C2 shows that the combination of ~CM * AR * PEAR * PK can lead to low 
cognitive load, irrespective of students' attitude towards science. In this configuration, although 
students are not treated with the concept map strategy, the affordances of AR can reduce their 
cognitive load. Meanwhile, these students have solid prior knowledge and rich AR experience, 
meaning that there are more available cognitive schemas in their long-term memory which will 
reduce the cognitive load placed on working memory. Therefore, their total cognitive load is low.

Third, configuration C3 reveals that the combination of CM * AR * ~ATS * PEAR * ~PK can 
yield low cognitive load. Unlike configuration C1, when AR and CM are present, students 
with low attitudes towards science and low prior knowledge can also obtain low cognitive 
load, but only if such students have rich AR operation experience since it reduces the risk of 
increasing students' low cognitive load.

Configurations of high cognitive load

Table 4 resents three possible solutions for high cognitive load, configuration D1, D2 and 
D3. The overall coverage (0.681) and overall consistency (0.885) reveal that these three 
combinations of causal conditions covered 68.1% of the students with high cognitive load.

TA B L E  4   Configurations causing low and high cognitive load.

Causal conditions

LCL HCL

C1 C2 C3 D1 D2 D3

CM ● ⊗ ● ● ⊗ ⊗

AR ● ● ● ⊗ ● ⊗

ATS ● ⊗ ●

PEAR ● ●

PK ● ● ⊗ ⊗ ⊗ ●

Consistency 0.810 0.824 0.828 0.928 0.888 0.920

Raw coverage 0.342 0.312 0.238 0.484 0.363 0.521

Unique coverage 0.029 0.047 0.079 0.008 0.029 0.022

Overall consistency 0.804 0.885

Overall coverage 0.414 0.681

Note: C1, C2 and C3 represent the three configurations that cause low cognitive load; D1, D2 and D3 represent the three 
configurations that cause high cognitive load. ● indicates the presence of this condition; ⊗ indicates the absence of this 
condition; the blank space indicates that the presence or absence of this condition is irrelevant to the outcome.
Abbreviations: AR, augmented reality; ATS, attitudes towards science; CM, concept map strategy; LCL, low cognitive load; 
HCL, high cognitive load; PEAR, prior experience with AR; PK, prior knowledge.
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       |  19WHAT FACTORS INFLUENCE SCIENTIFIC CONCEPT LEARNING?

First, configuration D1 shows that the combination of CM * ~AR * ~PK will lead to high cog-
nitive load. Notably, B1 (CM * ~AR * ~ATS * ~PK) is a subset of D1 (CM * ~AR * ~PK), indicating 
that for students with low prior knowledge, a high cognitive load will be generated if they do 
not get assistance from the AR learning tool, even if they adopt the concept map strategy. 
In this case, if students' attitudes towards science are also not positive, it will lead to poor 
academic performance.

Second, configuration D2 shows that high cognitive load can be caused sufficiently when 
~CM * AR * ~PK is satisfied. Although these students can observe peach blossoms' internal 
and external structure with the aid of the AR learning tool, their low prior knowledge results 
in their long-term memory not storing enough schemas to process new information. In this 
case, without the concept map strategy to aid in organizing and assimilating new informa-
tion, their working memory is more prone to being overloaded.

Third, configuration D3 (~CM * ~AR * ATS * PK) indicates that for students who have solid 
prior knowledge and positive attitudes towards science, if they are not treated with AR 
and the concept map strategy, they will achieve a high cognitive load. In contrast to B2 
(~CM * ~AR * ATS * ~PK), if the student's prior knowledge is low in this condition, it will lead to 
poor academic performance.

Robustness test

In this study, we conducted two methods to test the robustness of fsQCA results based 
on previous research (Schneider & Wagemann,  2012). Firstly, we changed the calibrat-
ing thresholds from 0.95, 0.5 and 0.05 to 0.9, 0.5 and 0.1. In other words, we changed 
the full membership threshold from the top 5% to the top 10% and adjusted the full non-
membership from 95% to 90%. Secondly, we changed the frequency benchmark from 2 to 
3, implying that the number of cases in the configuration of causal conditions included in 
the truth table is at least 3. After changing the parameters, we performed the necessity and 
sufficiency analysis again, and the results obtained were consistent with the initial results 
described above. Thus, the results of fsQCA in this study passed the robustness test.

DISCUSSION AND CONCLUSION

Although previous studies adopted various technologies and strategies to assist scientific 
concept learning, there is a lack of configurational evidence detailing these options. When 
past research on AR or the concept map strategy applied in the science education field is 
compared collectively, it reveals inconsistent empirical results, overlooks vital combinations 
with individual differences and obscures the true causal complexity of what drives high 
learning outcomes. In this study, we discuss how our research solved these research limita-
tions. We also demonstrate how fsQCA method can be employed to analyse the complexi-
ties of the science learning process. Returning to the three research questions posed above, 
we draw the following conclusions.

No single factor present or absent is necessary for good/poor 
academic performance and high/low cognitive load

In this study, we employed the fsQCA to conduct a fine-grained analysis of cases. According 
to the results of the necessary condition analysis, we found that there was no single fac-
tor present or absent that is necessary for good academic performance, poor academic 
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performance low cognitive load and high cognitive load. In detail, it was found that AR or 
CM alone does not always contribute to good academic performance and low cognitive 
load when considering individual differences (Cai et al.,  2014; Haugwitz et al.,  2010; Lin 
et  al.,  2015). This finding surpassed previous studies based on mean effects, which re-
vealed a positive effect of a single factor, AR or CM, on science learning (Cai et al., 2022; 
Liang et al., 2021; Sahin & Yilmaz, 2020). The combinations of AR and CM always obtain 
satisfactory learning outcomes, such as configurations A1, A2, A3, C1 and C3. However, 
the prerequisite is that at least one of three individual factors (ie, positive attitude, high 
level of prior knowledge and AR operation experience) should be present. In other words, 
the antecedent conditions influencing scientific concept learning operate interdependently 
with each other rather than discretely or via simple two-way interactions between selected 
conditions. This study holds significant practical implications. Prior to the implementation of 
AR technology and concept map strategies, researchers or educational practitioners should 
proactively evaluate students' learning attitudes, technological operational experience or 
prior knowledge levels to ensure that students possess at least one of these prerequisites. 
If none of these conditions are met, researchers need to exercise caution in the utilization 
of AR technology and concept map strategies. In particular, pre-training can be conducted 
before implementing AR technology to ensure that students master basic operating skills.

Multiple, equally effective configurations of causal conditions lead to 
good/poor academic performance and high/low cognitive load

This study adopted a holistic perspective to reveal the complex causal relationships among 
AR, CM, individual differences (attitudes towards science, prior experience with AR, prior 
knowledge) and learning outcomes. We identified three equifinal configurations sufficient 
for good academic performance, poor academic performance low cognitive load and high 
cognitive load, respectively. The findings supported the complexity theory that there are 
multiple pathways to improve science learning outcomes rather than a single optimal equilib-
rium (Ling et al., 2021). By analysing and comparing these configurations, four main findings 
can be drawn:

First, it was found that AR and CM co-existing almost in all configurations of good ac-
ademic performance and low cognitive load (as shown in A1, A2, A3, C1 and C2), which 
indicated the interdependencies of AR and CM could reduce students' cognitive load and 
facilitate their scientific concept learning performance. This finding reaffirms the theoretical 
claims of Clark (1994) and is consistent with the results of Chou et al. (2022), which revealed 
that combining AR and multidimensional concept maps positively influenced learning ef-
fectiveness and cognitive load. In our study, the AR learning tool superimposed the overall 
structure of the peach blossom and the internal structure of the pistil and stamen on the AR 
markers. It supplemented them with animations and audio explanations. This multimedia 
information based on spatiotemporal continuity would significantly reduce students' extra-
neous cognitive load, which has been confirmed in previous studies (Thees et al., 2020; Yu 
et al., 2022). Meanwhile, the hierarchical structure of the concept map used in this study cor-
responded to the three modules of the AR learning tool. This concept map utilized a graph-
ical and simpler grammatical structure to help students construct the knowledge framework 
of the learning topic, which can effectively reduce students' extraneous cognitive load 
(Schroeder et al., 2018). Moreover, filling in the concept map can guide students to identify 
key concepts in the AR learning tool and distinguish the relationship between concepts, 
increasing the germane cognitive load. In summary, this finding encourages researchers to 
further explore the deep integration of technology and strategies to create a more effective 
environment for science learning.
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Second, we found there were substitution effects among different variables. For instance, 
A2 and A3 showed that when AR and CM were present, good academic performance would 
be obtained if students have positive attitudes towards science or high prior knowledge. 
According to Skuballa et al.'s (2019) study, attitudes towards science and prior knowledge 
are both associated with decreased perceived task difficulty. Therefore, as long as one of 
these two conditions is satisfied, it can effectively reduce students’ perceived task difficulty, 
thereby facilitating the investment of cognitive engagement. This finding also illustrates sub-
stitution effects between causal conditions, which means that the same learning outcomes 
can be achieved by multiple combinations of conditions (Ling et al., 2021).

Third, the analysis of the six pathways leading to poor academic performance and high cog-
nitive load revealed that these students generally had low prior knowledge, implying a higher 
intrinsic cognitive load (Sweller et al., 2019). In this case, they would get a higher overall cogni-
tive load if they could not obtain the joint assistance of AR and CM. Under such configurations, 
if students do not hold positive attitudes towards science or do not have high prior knowledge, 
it could lead to poor academic performance. This finding re-emphasized the importance of the 
combination of AR and CM for learning outcomes (Chen et al., 2016; Chou et al., 2022). In ad-
dition, this finding extends beyond the general viewpoint discussed in prior studies, which indi-
cated a negative correlation between cognitive load and learning outcomes. This study further 
reveals that learners experiencing high cognitive load may exhibit poorer learning outcomes 
due to lower levels of prior knowledge or less positive learning attitudes.

Fourth, the analysis of the six pathways causing good academic performance and low 
cognitive load indicated that AR experience would influence cognitive load but did not di-
rectly impact learning performance. It is consistent with previous studies (Cázares, 2010; 
Chen & Wang, 2015; Dunleavy et al., 2009). For example, C2 and C3 showed that students 
should have rich experience with AR if low cognitive load is to be obtained, but A2 and A3 
showed that good academic performance could be obtained even if students do not have 
rich experience with AR. We speculate that this may be their first time using the AR learning 
tool. It may generate a higher cognitive load due to unfamiliarity with how the AR system op-
erates (eg, scanning AR markers, rotating and scaling virtual models with fingers). However, 
the novelty of AR keeps students highly motivated and engaged, thus allowing them to 
keep their attention on the learning activities. To avoid high cognitive load due to unskilled 
manipulation, some researchers point out that pre-training can be performed before the 
experiment (Dunleavy et al., 2009; Meyer et al., 2019).

There are asymmetric pathways for good and poor academic 
performance, high and low cognitive load

In this study, the asymmetric configurational findings provide new insights for explaining 
the reasons for the good and poor learning outcomes. Previous analytical approaches 
based on the symmetry hypothesis have validated that AR can effectively promote learn-
ing outcomes and have attributed poor performance in the control group to not benefit-
ing from AR (Sahin & Yilmaz,  2020; Yoon et  al.,  2017). However, such studies ignore 
the role of individual differences and the inherent asymmetric relationships between the 
conditions and the outcomes (El Sawy et al., 2010; Woodside, 2013). We found that the 
configurations leading to high and low learning outcomes in the current study were not 
entirely symmetrical. For example, configurations C2 and D2 showed that the combina-
tion of ~CM and AR could result in both high and low cognitive load, depending on how 
it was combined with individual factors. This finding indicates that researchers should 
recognize the complexity and asymmetry inherent in the learning process. Particularly 
in experimental research, attributing learning failure solely to the opposite of success is 
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overly simplistic. Instead, researchers should delve into the diverse impacts of educa-
tional interventions at the individual differences level. Future theoretical research should 
also incorporate complexity theory and configurational perspectives when constructing 
models that elucidate factors influencing learning outcomes.

IMPLICATIONS, LIMITATIONS AND FUTURE WORK

Our study theoretically and methodologically contributes to the field of K1-2 science edu-
cation. This study's first theoretical implication is to understand better the complex causal 
relationship in scientific concept learning by integrating AR technology, the CM strategy 
and individual differences into a conceptual model. It is the first attempt to use fsQCA ana-
lytical method to synthesize five causal conditions to investigate their combined effects on 
scientific concept learning, which breaks through previous regression analysis or ANOVA 
studies. The second theoretical implication of this study lies in the investigation of individual 
differences. The role of individual differences has been widely recognized in multimedia 
learning research since it can be used to explain the reason for different learning outcomes 
in the same intervention condition. In particular, this study comprehensively investigates 
how individuals' priori knowledge, AR experience and attitudes influence the effectiveness 
of external interventions.

The present study provides some practical implications for instructional designers, in-
structors and relevant practitioners since it explains how critical factors of scientific con-
cept learning predict high learning outcomes better. First, although the necessary condition 
analysis did not find the necessity of AR or CM alone, multiple pathways show that the 
combination of AR and CM could lead to satisfactory learning outcomes. Therefore, we 
recommend that more AR applications be introduced in K-12 science classes and science 
centres. Due to the abstract and microscopic nature of scientific concepts, AR technology 
can give full play to its technical advantages of virtual-real integration and natural interac-
tion, superimposing virtual representational information into real situations to enhance the 
learning experience. More importantly, instructional designers must also select appropriate 
instructional strategies based on the learning content. Thus, we appeal to more studies on 
integrating generative learning strategies into the AR learning environment. Second, this 
study found that the lack of positive attitudes or high prior knowledge could be a ‘trigger’ 
for poor learning outcomes when students were under a high cognitive load. In this regard, 
teachers should pay more attention to these learners with low prior knowledge and low at-
titudes and provide them with individualized instruction when necessary. Third, this study 
found that the absence of AR experience may also yield good learning outcomes, which 
may benefit from the novelty effect of AR technology. Nevertheless, we suggest adding pre-
training before the experiment to avoid unnecessary waste of cognitive resources caused 
by unskilled manipulation.

Some limitations should be identified in this study. First, in fsQCA, the number of possible 
configurations increases exponentially with the number of conditions (2K), implying that an 
excessive number of conditions may complicate the interpretation of the findings. This study 
included 5 (moderate number) critical factors influencing science concept learning. Future 
studies can examine more complex settings involving other conditions, such as prompts or 
summarization strategies, VR technology and spatial ability. Second, although fsQCA is an 
analytical method that integrates the advantages of quantitative and qualitative analysis, it 
is still difficult for large-sample QCA studies to conduct qualitative analysis as deeply and 
richly as case studies. Therefore, in future research, we will consider interviewing students 
in different configurations to provide insight into the reasons for the different configurations. 
Third, the cognitive load measurement tool used in this study is derived from the work of 
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Paas and Van Merriënboer (1993). While widely employed for assessing students' cogni-
tive load in multimedia learning environments, this tool lacks the capacity to differentiate 
between intrinsic, extraneous and germane cognitive loads. Hence, in future research, we 
will explore the adoption of the scale proposed by Klepsch et al. (2017). This scale offers 
a more nuanced insight into the interplay of various factors influencing students' intrinsic, 
extraneous and germane cognitive loads.
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