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Abstract
Tangible programming combines the advantages of object manipulation with program-
mable hardware, which plays an essential role in improving programming skills. As a 
tool for ensuring the quality of projects and improving learning outcomes, the PDCA 
cycle strategy is conducive to cultivating reflective thinking. However, there is still 
a lack of empirical research on the effect of introducing the PDCA cycle strategy into 
programming education. In this study, using a PDCA cycle strategy, in a four-pronged 
model of “(P)draw up a plan, (D)assemble and programming, (C)test and debug, dis-
play and reflect (A),” and its effects on students’ programming skills and their reflec-
tive thinking were explored. There were 65 children between the ages of 7 and 8 years 
participated in this study. There were 31 students in each of the experimental group and 
the control group. A combination of qualitative and quantitative research methods was 
adopted in this research, and students’ programming processes and results were observed 
and counted. The study results revealed that after attending the ‘Magic Card Robot’ 
course that applied the PDCA cycle strategy, the experimental group students outper-
formed their counterparts in programming skills (sequencing, repetitive and conditional 
structures). Meanwhile, the experimental group students’ reflective thinking levels were 
higher than those of the control group students. These findings imply that tangible pro-
gramming education using the PDCA cycle strategy in the course has potential.

Keywords  Tangible programming · Programming skills · Reflective thinking · 
PDCA cycle strategy

1  Introduction

Programming is essential in improving computational thinking (Chen et  al., 
2023) and problem-solving capabilities and is considered one of the ideal ways 
to develop 21st-century skills (Hsu et al., 2018). In this digital era, programming 

http://orcid.org/0000-0001-5962-0448
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-12037-4&domain=pdf


	 Education and Information Technologies

1 3

has permeated various aspects of our daily life (Iivari et  al., 2020). In the edu-
cational field, programming instruction has flourished, particularly among young 
pupils. However, due to the obscure syntax and logic of computer programming 
languages (Demir, 2022), many novices struggle to code independently and solve 
practical problems. This can lead to a lack of self-confidence and a decreased 
interest in learning programming (Yang et  al., 2023). Additionally, in most pro-
gramming classes, students interact primarily with computer screens (Alonso, 
2020; Su et al., 2022), which is not an ideal way for young students with develop-
ing eyesight to learn programming (Marsh et al., 2016). As a result of the ongo-
ing conflict between children’s programming education and educational teach-
ing demands, tangible programming aids driven by tangible programming have 
evolved as solutions to those issues (Wyeth, 2008).

Tangible programming combines the advantages of object manipulation with 
programmable hardware that assists students in reducing cognitive load (Sapou-
nidis et al., 2015) and mastering extremely abstract concepts (Zhong et al., 2022). 
In addition, tangible programming requires continuous iteration for dynamic qual-
ity improvement, which involves not only debugging the code but also designing 
and assembling the robot. Reflective thinking plays a vital role in debugging and 
problem-solving (Yildiz Durak, 2020), which also has been shown to help children 
retain knowledge longer (Tan, 2021).

To ensure effective programming instruction, researchers have put various strat-
egies into practice, such as paired programming (Sun et  al., 2022) and collabora-
tive learning (Lai & Wong, 2022). However, these strategies mostly emphasize the 
organizational form of programming learning and neglect the value of reflection in 
programming. Although some researchers have introduced reflection into teaching, 
it is mainly utilized as a post-evaluation method (Lin et  al., 2022; Shanley et  al., 
2022) instead of an essential part of the teaching strategy. The Plan-Do-Check-
Action (PDCA) cycle proposed by Walter A. Shewhart (Deming, 2000) views 
‘check’ as a crucial step that assures a spiral of high-quality learning by highlight-
ing the value of reflection, which offers a possibility to develop children’s reflec-
tive thinking in tangible programming education (Hellberg & Fauskanger, 2022). 
In this regard, this paper aims to explore whether the integration of the PDCA cycle 
strategy can facilitate the pupils’ tangible programming performance, a quasi-exper-
iment was conducted among Chinese elementary school students, and several instru-
ments were utilized to assess their programming skills and reflective thinking levels.

2 � Literature review

2.1 � Tangible programming learning

Tangible programming is a form of programming that uses programmable hardware 
to generate human-computer interaction, and the process of running a physical object 
can be described as program execution (Schweikardt & Gross, 2008). Moreover, tan-
gible programming provides real-time feedback based on the operation of the robot, 
distributes programming errors across physical hardware, clarifies the relationship 
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between code faults and tangible coding mechanisms (Silvis et al., 2022), and visu-
alizes and concretizes abstract concepts (Bers & Horn, 2010). According to Piaget’s 
theory of cognitive development (Piaget, 1973), physical teaching aids are neces-
sary to help children understand abstract concepts during the concrete operations 
stage (Burleson et al., 2018; Revelle et al., 2005) and to train their logical thinking 
(Ackermann, 1996; Piaget, 1959). In this regard, tangible programming lowers chil-
dren’s threshold to learn complex computer syntax. Sapounidis et al. (2015, 2019) 
have conducted several studies about tangible learning, and the results showed that it 
was attractive to young girls and supported a high level of exploration. Additionally, 
in Cejka et al. (2006)’s study, children as young as four years old could construct 
simple robotic projects and understand abstract concepts by manipulating program-
mable hardware. The effectiveness of tangible programming in teaching has been 
confirmed by many researchers.

As the use of tangible programming in children’s programming language learning 
grows, the development of tangible programming aids has become a topic of interest 
in elementary programming education (Fischer & Lau, 2006; Marshall, 2007). For 
example, Perlman (1976) developed a Slot Machine that controls robot motion by 
inserting cards. In Bers et al. (2019)’s study, Kibo is another tangible interface pro-
gramming tool that combines Lego blocks in the correct order. However, while the 
diversity and practicality of tangible programming aids have significantly increased, 
their usage in teaching practice has primarily focused on debugging the order of pro-
grammable hardware and less on improving the construction-based robot regarding 
its design and assemble flaws (Silvis et al., 2022; Smith, 2009). In addition, exist-
ing studies on children’s robotics teaching environments did not make a clear dis-
tinction between issues of programming (e.g., omitting a command) and issues of 
robot assembly (e.g., connecting a sensor to the wrong port) (Socratous, 2020). For 
example, Bers et al. (2014) used construction-based robotics to train children’s com-
putational thinking and emphasized the need to set aside more time to think about 
computer programs rather than spend time assembling robots. Moreover, in Feijoo-
Almonacid and Rodriguez-Garavito’s (2022) study, a robot Eli was provided that 
was easy to assemble. Thus, children would focus more on debugging the robot’s 
movement programming.

According to the abovementioned studies, fixing robot physical problems has not 
received as much attention as debugging programming breakdowns. If their first for-
ays into programming, students rarely succeed in producing acceptable solutions (Chen 
et al., 2020). Therefore, it is crucial to develop children’s programming skills by simul-
taneously grappling with bugs in the program and the physical aids (Yildiz Durak, 
2020).

2.2 � Debugging and reflective thinking

According to Dewey’s empiricism (Yürük, 2007), reflective thinking is crucial 
for effective problem-solving (Antonio, 2020; Bayrak & Usluel, 2011; Kizilkaya 
& Aşkar, 2009), and the key to debugging is to continuously identify and correct 
problems. For this reason, it is obvious that reflective thinking can help children’s 
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continuous debugging of code and robots in programming learning (Yildiz Durak, 
2020), thereby enhancing programming skills. Specifically, in terms of debugging 
programming code, reflective thinking can help identify complex problems (Altın & 
Saracaloğlu, 2018; Liao & Wang, 2019), enabling children to manage their program-
ming process, question their decisions and actions, and explore alternative solutions 
to improve their programs’ quality (Havenga et  al., 2013). In terms of modifying 
physical robots, assembling LEGO robots can be viewed as executing a design, and 
reflective thinking is an integral part of this process (Hong & Choi, 2019; Walther 
et al., 2011). Designers use reflective thinking to review previous experiences and 
select appropriate solutions to reorganize and rearrange the design work (Salido & 
Dasari, 2019). Therefore, reflective thinking is considered the key to achieving suc-
cessful debugging code and modifying robots in learning tangible programming.

However, most empirical studies on tangible programming have focused on the 
development of computational thinking skills such as algorithmic thinking (Evripi-
dou et al., 2021) and problem-solving (Shim et al., 2017), and there is a dearth of 
research focusing on reflective thinking (Angeli & Valanides, 2020; Cho & Lee, 
2017; Hsieh et al., 2022). In terms of programming instructional approaches, exist-
ing studies cared more about passive post-reflective correction by children (Lin 
et al., 2022; Malik et al., 2021; Shanley et al., 2022). Although some studies have 
used reflective learning during the “check and compare final procedures” in the 
teaching process (Burleson et al., 2018), they do not explicitly include reflection as a 
specific part of the teaching strategy. Consequently, there is a need to explore teach-
ing strategies that can develop children’s iterative reflection ability, thereby provid-
ing the right ideas for the effective application of tangible programming aids and 
teaching practices.

2.3 � Application of PDCA cycle strategy in programming

The PDCA cycle was proposed by Shewhart (1931), and it has been commonly used 
as a problem-solving model in the field of quality management (Choo et al., 2007). 
PDCA emphasizes continuous improvement learning and recognizes reflection as a 
critical step (Hellberg & Fauskanger, 2022). The teaching strategies of PDCA can 
be categorized into four stages. Firstly, in the “P (plan)” stage, solutions are devel-
oped based on the requirements and objectives of the problem. Secondly, in the “D 
(do)” stage, the solutions are implemented. Thirdly, in the “C (check)” stage, the 
implementation process is closely monitored to identify any problems. Lastly, in the 
“A (act)” stage, the reasons for failure are analyzed, and the successes are used as a 
standard to continuously enhance the quality of the product.

During instruction, the PDCA cycle strategy is commonly used for the man-
agement and monitoring of teaching quality. In the study of Walasek et al. (2011), 
the PDCA cycle strategy was a valuable tool for ensuring the quality of e-learning 
projects and improving student learning outcomes. Blagojević and Micić (2013) 
applied the PDCA cycle in an intelligent learning system to enhance the quality of 
students’ e-learning. Based on Taylor Principle and PDCA cycle theory, Wang and 
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Guo (2021) proposed a student-centered inquiry’ Renewable Energy Sources (RES) 
curriculum model to foster their creativity and problem-solving skills.

However, little study has focused on how PDCA is integrated into the field of 
programming education, let alone investigating the effects of PDCA on reflective 
thinking in primary school students during tangible programming learning. Accord-
ing to the aforementioned discussion, programming can be used to develop reflective 
thinking, while the PDCA cycle can safeguard the quality of programming through 
reflective learning. We, therefore, assumed that students’ programming skills and 
reflective thinking might improve if teachers apply the PDCA cycle strategy to pro-
gramming instruction.

2.4 � The revised PDCA model

In the present study, we tried to apply the PDCA cycle to improve students’ pro-
gramming skills and reflective thinking. As such, a revised model was proposed, 
as shown in Fig. 1. In this model, the process starts with P, representing drawing 
up a solution plan, followed by D - assembling the robot and programming it with 
programmable building blocks, and C - testing the results and debugging based on 
feedback. The model starts from P and passes through the D and C stages, showing 
improvement in multiple loops (single-loop, double-loop, triple-loop). Because tan-
gible programming is aimed at younger children, debugging may not happen auto-
matically, and careful and thoughtful educational guid-.

Fig. 1   The PDCA cycle model
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ance is required (Gelter, 2003) for the quality of learning to be sustained in the 
right direction. Thus, we based on the multiple loops PDCA cycle, which both 
focuses on student learning and emphasizes the teachers’ guidance role for chil-
dren’s tangible programming. Finally, the process concludes with A, showing and 
reflecting on the work.

2.5 � Research questions

Based on the abovementioned theoretical background and empirical studies, the 
study aimed to explore the effectiveness of the PDCA cycle strategy in tangible pro-
gramming learning by comparing it with the traditional teaching strategy. Student’s 
reflective thinking levels and programming skills were examined to answer the fol-
lowing questions:

RQ1: What are the differences in the effectiveness of traditional teaching strate-
gies and the PDCA cycle strategy in improving programming skills in the context 
of tangible programming?
RQ2: What are the differences in the effectiveness of traditional teaching strate-
gies and the PDCA cycle strategy in improving reflective thinking levels in the 
context of tangible programming?
RQ3: What are the students’ experiences of a course taught using the PDCA 
cycle strategy in the context of tangible programming?

3 � Methodology

3.1 � Participants

A quasi-experimental design was adopted in this research, two classes with a total 
of 65 students were randomly selected from four second-grade classes in S primary 
school in Y city, Shandong province, China. Students were randomly dichotomized 
into the control (N = 32) and experiment (N = 33) groups. After the treatment, three 
students were eliminated from data analysis because two did not participate in the 
test, and another did not complete the test. As a result, the final count included only 
62 students who were tested. Out of these, 31 students were in the experimental 
group (20 girls and 11 boys), and the remaining 31 were in the control group (20 
girls and 11 boys). The mean age of the students was 8.63 years, with an age range 
between 7 and 9 years. All students explicitly volunteered to participate in the exper-
iment and submitted their parents’ consent.

3.2 � Learning materials

The Magic Card Robot was chosen as the tangible programming aid for this 
study. Magic Card Robot aids were entry-level STEAM educational robotics kits 
explicitly designed for children aged 6–8 and widely used in young-adult tangible 
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programming courses in most Asian countries, especially in Korea, China, and 
some southeast Asia countries. As shown in Fig. 2, Magic Card Robot aids consist 
of four parts: An instruction manual, Large building bricks, Electronic components 
(Main controller, Motor, Touch sensor, LED), and Programming cards. Children 
were encouraged to develop their programming skills using large building bricks 
and electronic components such as a main controller, motor, touch sensor, and 
LED. An instruction manual guided them to assemble various robot models. After 
completion, they could use a swipe card reader to scan programming cards, which 
were then scanned into the main board (as depicted in Fig. 3). By following this 
process, children could learn programming in a step-by-step manner and gain mas-
tery of the three basic structures of sequential, repetitive, and conditional program-
ming. These structures did not involve variables or operations and were designed to 
develop initial programming thinking and simple logical reasoning skills.

3.3 � Experiment procedure

Before the course, one regular teacher in charge of tangible programming instruc-
tion and two research assistants who were responsible for addressing students’ 
inquiries received five days of training to understand Magic Card Robot aids, the 
‘Magic Card Robot’ course, and teaching methods (PDCA cycle strategy, tradi-
tional teaching strategy). The teaching experiment lasted eight weeks, with two 
sessions per week (one 90-minute session), and the research process consisted of 
three main phases (see Figs. 4 and 5).

Fig. 2   Magic Card Robot aids

Fig. 3   Programming card scanning sequence
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In the first phase (weeks 1–2), students’ programming skills and reflective 
thinking levels were examined. Then, students were provided basic training on 
hardware related to Magic Card Robot aids, including the Main controller, Swipe 
card reader, Motor, Touch sensor, and LED.

The course was implemented in the second phase (weeks 3–7). The learning 
tasks were detailed in Fig.  4, which included a series of contents that integrate 
basic physic mechanical knowledge and sequential, repetitive, and conditional pro-
gramming knowledge into real-world scientific applications. This course aimed 
to guide students in writing logical processes and displayed scientific phenomena 
using Magic Card Robot aids.

The experimental group used the PDCA cycle strategy, which consisted of four 
steps:

P‑Plan (draw up a plan)  The teacher introduced the problem situation and assigned 
the task. Students independently developed a solution (in the form of pseudo-code 
and flowchart) based on the task requirements;

Fig. 4   Learning contents
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D‑Do (assemble and programming)  Students independently built the robot accord-
ing to the instruction manual and applied the card programming to manipulate the 
robot movement;

C‑Check (test and debug)  Students observed the movement of the programmed robot 
to judge whether the program input matched the expected output. When there was a 
mismatch, students debugged the existing errors under the guidance of the teacher 
(based on PDCA cycle iteration) to identify, analyze and correct the mistakes;

Fig. 5   Research procedure
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A‑Action (display and reflect)  Students independently analyzed the reasons for fail-
ure, summarized their experiences, and shared their successful works through the 
reflection iteration.

Subsequent three cycles were then built based on the experience from the previ-
ous cycle to enhance the quality of programming learning with continuous reflec-
tion and improvement. In the control group, a traditional teaching strategy was 
employed. Firstly, the teacher introduced the problem situation and determined the 
tasks to be completed, showing the general process of the solution. Next, the teacher 
taught the steps and points of building the robot, and students followed the teacher 
to apply the card programming to manipulate the robot movement. Finally, the stu-
dents completed the work, and the teacher summarized the course.

In the third phase (week 8), a post-test was conducted to evaluate the student’s 
programming skills and reflective thinking levels. Each student was asked to com-
plete the test independently. Furthermore, six students were randomly selected for 
semi-structured interviews, each lasting 8–10 min, and recorded with the permission 
of the interviewees.

3.4 � Instruments

This study was performed by using a mixed-methods approach. The quantitative 
data included the effectiveness of the application of the PDCA cycle strategy on stu-
dents’ programming skills and reflective thinking levels. These metrics were respec-
tively measured using the “Solve-It Tasks Programming Assessment” (Sullivan & 
Bers, 2018) tool and the Reflective Thinking Assessment Questionnaire (Hong & 
Choi, 2019). For the qualitative data, semi-structured interviews were used to under-
stand how students engaged in reflective learning and problem-solving during tangi-
ble programming.

3.4.1 � Solve‑It Tasks Programming Assessment

The Solve-It Tasks Programming Assessment (Solve-It Tasks) was developed by 
the DevTech research group at Tufts University (Sullivan & Bers, 2018) to examine 
young children’s knowledge of foundational programming concepts ranging from 
sequencing, repetitive and conditional structures (Strawhacker & Bers, 2015). The 
assessment consisted of five parts: Easy Sequencing, Hard Sequencing, Easy repeti-
tive, Hard repetitive, and Using the conditional.

This study utilized a series of “Solve-It Tasks” to assess students’ program-
ming skills. Solve-It 1 and 2 assessed students’ mastery of sequential structure 
knowledge, which required students to write instructions for robot movements in 
a specific sequence. Solve-It 3 and 4 focused on the repetitive structure, which 
required students to incorporate instructions into more extended programs and 
create subroutines. Solve-It 5 tested conditional structure by asking students to 
write instructions for the robot to make choices based on specific conditions. Rel-
atively speaking, Solve-It 1 and 3 assessed basic programming concepts, while 
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Solve-It 2, 4, and 5 evaluated more complex programming skills. The difference 
between simple and complex tasks for sequential and repetitive structures was 
determined by the number of cards needed to order the program correctly.

The test was conducted in week 8, where students were asked to listen to a story 
about robots based on their familiar background and then try to create a program 
using programming cards. The “Dinosaur” test case is shown in Fig.  6. After the 
teacher finished reading the story once, students were asked to arrange the program 
cards according to the story, and then the teacher repeated the story for students to 
check and modify their programs.

The scoring rules for “Solve-It Tasks” were based on a two-stage scoring system 
(Sullivan & Bers, 2018), including the position of ‘Begin’ and ‘End’ (0 to 3 points) 
and the relative order of the action blocks (0 to 3 points). Each question was scored 
on a scale of 0–6 based on the correctness of the student’s.

program, with a total of 30 points. The scoring was done by two research assis-
tants, and after the scoring was completed, they exchanged and reviewed each oth-
er’s work. If there was a discrepancy, they discussed it and came to a consensus 
on the score. The Cronbach’s Alpha coefficient value of the Solve-It Tasks Pro-
gramming Assessment was 0.878, indicating a high level of reliability in the test 
results.

3.4.2 � Reflective Thinking Assessment Questionnaire

The Reflective Thinking Assessment Questionnaire was developed based on 
the scale of “Assessing Reflective Thinking in Solving Design Problems(ARTi 
D)”(Hong & Choi, 2019). The finalized scale included three dimensions, which 
were single-loop reflection, double-loop reflection, and triple-loop reflection, as 
shown in Table 1.

Single-loop reflection involved reflecting on the effectiveness of actions taken 
in order to achieve predetermined goals, focusing on identifying and correcting 
errors. In contrast, double-loop reflection went beyond this by also questioning the 
underlying assumptions and goals themselves and generating new goals that may 
better align with desired outcomes (Flood & Romm, 1996). This iterative process 

Fig. 6   “Dinosaur” test case
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was similar to the PDCA cycle strategy. Finally, triple-loop reflection involved 
critical reflection (Mezirow, 1990) on the presuppositions and values underlying 
one’s programming process, as well as the larger social and educational context in 
which it occurred, intending to create more just and equitable outcomes.

The Reflective Thinking Assessment Questionnaire consisted of 10 questions on a 
5-point Likert rating (1 = never, 2 = seldom, 3 = sometimes, 4 = often, 5 = always). The 
total score on the scale was 50 points. The total score indicated the level of reflective 
thinking, and the questionnaire demonstrated high internal consistency with a Cron-
bach’s Alpha value of 0.803.

3.4.3 � Semi‑structured interviews

At the end of the course, a semi-structured interview was conducted among six stu-
dents randomly selected from the experimental group to understand their perceptions 
and experiences of the programming class supported by the PDCA cycle. We aimed 
to provide some qualitative evidence to support the quantitative results. The interview 
questions were designed as follows.

Question 1: Do you enjoy the ‘Magic Card Robot’ course? What do you learn from 
this course?
Question 2: Have you encountered any problems in the process of tangible program-
ming? If so, how did you solve it?
Question 3: Which part of the class do you think attracts you most?

4 � Results

4.1 � Programming skills

Students’ programming skills were reflected by their “Solve-It Task” perfor-
mance, consisting of three sub-dimensions (i.e., sequential, repetitive, conditional 

Table 1   Reflective Thinking Assessment Questionnaire

Dimensions Item

Single-loop I evaluated whether the sequencing could be done effectively.
I checked whether the sequencing scheme could successfully get the robot to move.
I evaluated whether the sequencing allowed the robot to move correctly.

Double-loop I re-examined the sequencing scheme to identify existing problems.
I re-judged my previous understanding of the problem.
I checked why the new sequencing was critical to solving the problem.

Triple-loop I assessed that my sequencing was compliant.
I assessed that the new sequencing was the best solution.
I found ways or laws to get the robot moving.
I consider the ethical issues associated with tangible programming.
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Table 2   The paired-sample t-test result of the overall programming skills

**p < .01. CI = Confidence Interval

Group Pairs Paired Differences t Probability 
(two-tailed)

Cohen’s d

Mean SD 95% CI of the difference

Lower Upper

Experimental Pre-test & 
Post-test

-11.160 2.853 -12.208 -10.115 -21.782 0.000** 3.912

Control Pre-test & 
Post-test

-6.520 4.265 -8.081 -4.952 -8.506 0.000** 1.528

Table 3   The paired-sample t-test on the two groups’ three sub-dimensions of the programming skills

**p < .01. CI = Confidence Interval

Variables Group Pairs Paired Differences t Probabil-
ity (two-
tailed)

Cohen’s d

Mean SD 95% CI of the 
difference

Lower Upper

Sequential Experimental Pre-test & 
Post-test

-2.400 0.724 -2.669 -2.138 -18.491 0.000** 3.321
Control -1.630 1.231 -2.081 -1.177 -7.366 0.000** 1.323

Repetitive Experimental Pre-test & 
Post-test

-2.190 0.873 -2.514 -1.874 -13.998 0.000** 2.514
Control -1.030 1.103 -1.437 -0.628 -5.213 0.000** 0.936

Conditional Experimental Pre-test & 
Post-test

-1.970 1.329 -2.455 -1.480 -8.245 0.000** 1.486
Control -1.190 1.515 -1.749 -0.638 -4.387 0.000** 0.788

structure) of five tasks. To answer question 1, we investigated students’ improve-
ment of programming skills over the experiment and compared the differences 
between the two groups. Independent sample t-test showed that, in terms of stu-
dents’ prior programming skills, there was no significant difference (t = 0.684, 
p > .05) between the experimental group (MD = 12.936, SD = 2.632) and the con-
trol group (MD = 12.484, SD = 2.567). Furthermore, students in both groups scored 
approximately 13 out of 30 points, indicating ample room for improvement in their 
programming skills.

We then compared their improvement in programming skills. Table 2 showed that 
students in both groups significantly improved (experiment group: p < .05, Cohen’s 
d = 3.912; control group: p < .05, Cohen’s d = 1.528).

We subsequently analyzed the differences between the three sub-dimensions. As 
shown in Table  3, the paired-sample t-tests revealed significant improvements in 
the three sub-dimensions of programming skills for both groups. Specifically, the 
p-value for the sequential structure to conditional structure tasks were 0.000, 0.000, 
and 0.000 in experiment groups.000, 0.000, 0.000 in control group. In general, 
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tangible programming has effectively developed primary school children’s program-
ming skills and three sub-dimensions of programming skills.

To compare the differences between the two groups’ Solve-It Tasks perfor-
mance, a one-way analysis of covariance (ANCOVA) was conducted by using 
the pre-test scores as the covariate and experimental conditions as independents 
independent variables. The F-test results for the product terms of experimental 
conditions and pre-test Programming skills did not violate the homogeneity-of-
slopes assumption (F = 3.186, p > .05), indicating it was sensible to perform the 
ANCOVA test.

Table  4 shows that, in terms of programming skills, the students in the exper-
imental group performed significantly better than those in the control group 
(F = 46.851, p < .001, partial η2 = 0.443). The results demonstrated that using the 
PDCA cycle strategy more effectively developed students’ programming skills than 
the traditional teaching method.

After confirming the effect of the PDCA strategy on students’ overall pro-
gramming skills, we compared its three sub-dimensions (see Table  5). Specifi-
cally, the experimental group had a clear understanding of the sequential structure 
(MD = 5.177) and could sequence the algorithmic instructions accurately. The 
experimental group also scored higher on the repetitive structure (MD = 4.758), 
showing that they could create simple repetitive programs, i.e., embedding repeti-
tive instructions in a series of program instructions and ensuring the integrity of the 
instructions by repeating a core set of steps. The conditional structure required link-
ing specific actions to the conditions that make them necessary or desirable, among 
which the experimental group performed a conditional test score of (MD = 4.226), 
meaning that they were capable of mastering basic logical reasoning.

Table 4   The one-way ANCOVA result of the overall programming skills

***p < .001

Variables Group N Mean SD Adjusted 
mean

Adjusted SE F Partial η2

Programming 
skills

Experimental 31 24.100 2.561 24.065 0.519 46.851*** 0.443

Control 31 19.000 3.173 19.032

Table 5   The one-way ANCOVA on the two groups’ three sub-dimensions of the programming skills

***p < .001, **p < .01. SD = standard deviation; SE = standard error

Variables Group N Mean SD Adjusted mean Adjusted SE F Partial η2

Sequential Experimental 31 5.177 0.599 5.166 0.116 32.908*** 0.358
Control 31 4.210 0.693 4.221

Repetitive Experimental 31 4.758 0.644 4.760 0.127 37.363*** 0.388
Control 31 3.661 0.757 3.660

Conditional Experimental 31 4.226 1.117 4.218 0.203 10.931** 0.156
Control 31 3.258 1.125 3.266



1 3

Education and Information Technologies	

4.2 � Reflective thinking levels

To explore students’ reflective thinking levels, we assigned the dimension where 
students scored highest as their individual reflective thinking levels. The results 
showed that prior to the intervention, out of 62 students, 61.29% (n = 38) students 
were at the single-loop reflection level, 24.19% (n = 15) students hit the double-loop 
reflection level, and 14.52% (n = 9) students reached the triple-loop reflection level. 
Moreover, students presented comparable levels in both groups (t = 0.121, p > .05). 
The results indicated that their entry behavior was similar. Therefore, we continued 
to do the following analysis.

The effect of the PDCA cycle strategy on reflective thinking levels was further 
assessed. A one-way ANCOVA analysis was conducted by using the pre-test reflective 
thinking levels as a covariate, the post-test reflective thinking level as an independent 
variable, and experimental conditions as a dependent variable. The F-test results for 
the pre-test and post-test reflective thinking levels and experimental conditions did not 
violate the homogeneity-of-slopes assumption (F = 2.947, p > .05), indicating it was 
sensible to perform the ANCOVA test. It was found that students in the experimental 
group achieved significantly higher levels of reflective thinking than those in the con-
trol group (F = 39.376, p < .001, partial η2 = 0.036), as shown in Table 6.

Table 7 showed the students’ ARTiD’s reflective thinking levels before and after 
the experiment. For the experimental group, 58.06% (n = 18) achieved double-loop 
reflection, demonstrating that students who intervened by the PDCA cycle strategy 
were enabled to revisit continually, reasonably question, and iterate on their already 
defined goals or programs to achieve better learning outcomes. For students in the 
control group, 51.61% (n = 16) were in single-loop reflection, where they sought 
to match problems quickly and think linearly, completing tangible programming 

Table 6   The one-way ANCOVA on the two groups’ reflective thinking levels survey

***p < .001

Variables Group N Mean SD Adjusted mean Adjusted SE F Partial η2

Reflective 
thinking 
levels

Experimental 31 43.169 3.567 43.156 0.812 39.376*** 0.400

Control 31 35.936 5.385 35.949

Table 7   Distribution rates of 
students’ reflective thinking 
levels in pre-test/post-test

the distribution rates refer to the proportion of students with these 
reflective thinking levels (single-loop, double-loop, three-loop) in 
the total number of students in this class

Dimensions Experimental (%) Control (%)

Pre-test Post-test Pre-test Post-test

Single-loop 54.84 16.13 64.52 51.61
Double-loop 32.26 58.06 19.35 29.03
Triple-loop 12.90 25.81 16.13 19.35
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tasks. Therefore, the PDCA cycle strategy effectively improved students’ reflective 
thinking.

4.3 � Students’ experience of PDCA cycle strategy and tangible programming 
learning

To investigate the effect of PDCA strategy on students’ experience in a tangible pro-
gramming class. A semi-structured interview was subsequently conducted among 
six students, who were randomly selected in the experimental group. “Their experi-
ence with the ‘Magic Card Robot’ course, the problems they encountered during 
the course and how they solved them, and their favorite part of the course” were 
interviewed.

Firstly, the experience of the ‘Magic Card Robot’ course. All six students said 
they enjoyed the course and the learning style. For instance, student A indicated 
that the ‘Magic Card Robot’ course combined the knowledge needed to learn with 
practical applications and made me enjoy exploring the world of science. Student 
B referred, “I loved the robots. In this way of learning, I have used my imagina-
tion to put together many different shapes of robots and then utilized the swipe card 
programming function to make the robots move, which was very helpful for my pro-
gramming learning.”

Secondly, the problems encountered during the learning process and the 
solutions. When students were asked about the difficulties they encountered in 
the process of tangible programming, most students reported that on the first 
attempt, the robot usually did not move forward as required. For example, stu-
dent C said, “I could not succeed on the first attempt, but instead needed to 
keep checking and adjusting to get the robot to move.” Programming skills are 
spiraling, requiring most students to go through multiple PDCA cycles and 
improve their programming skills. In addition, Student E expressed, “When I 
had trouble programming, I sought help from my teacher. The teacher care-
fully explained the meaning of each step, which helped me achieve my goal.” It 
also reflects the necessity of providing targeted guidance during the testing and 
debugging stage.

Finally, students’ favorite part of the course. The final display and reflect ses-
sion were favored by the students. Student F said, “Whenever the class ended, eve-
ryone presented their work individually and showed how to use repetitive structures 
to make the robot program easy, which I will try to do in future classes.” It is clear 
from this process that the PDCA cycle strategy prompts students to reflect more pro-
foundly to standardize and replicate successful experiences.

5 � Discussion

Programming skills are measured by the results of the programming tasks, which 
mainly consist of sequential, conditional, and repetitive structure, as a way to exam-
ine students’ hands-on programming operational skills(Kuo & Hsu, 2020). The 
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results showed that the programming skills of both groups improved significantly, 
indicating that the students understood the concepts related to sequential, condi-
tional, and repetitive structure and had the programming practical operation abil-
ity. This finding was in line with the findings of Sullivan and Bers’s (2016) and 
Cejka et  al. (2006) studies. Furthermore, a comparison between groups revealed 
that the experimental group performed better on the programming skills test and 
scored higher on the task. In-depth analyzes of the reasons for the more signifi-
cant improvement of programming skills in the experimental group lay in the fact 
that the PDCA cycle strategy has the same logic as solving programming problems 
(Daminda Kuruppu, 2022). It also helped students understand and reflect on the 
problems encountered in their learning, encouraged them to compare and analyze 
the gap between achieved and expected goals, and discussed current shortcomings 
and strategies for improvement. Students in the experimental group were guided 
by the PDCA cycle strategy to improve their programming skills by understanding 
problems, reflecting on improvements, and solving problems(Choo et  al., 2007). 
This finding reaffirmed the positive effect of tangible programming aids.

In terms of reflective thinking level, students in the experimental group per-
formed better than those in the control group, students in the experimental group 
mostly presented a double-loop reflection level. One possible reason is that every 
student was required to test and debug (The “Check” in PDCA) through an iterat-
ing process. In this case, they were more prone to critically examine the process and 
results of their investigations and repeatedly adjust the programming sequence to see 
if the problem was addressed correctly (Flood & Romm, 1996; Schepers & Wetzels, 
2007). This finding also tallies with Staudinger (2013)’s study, which found that 
reflection may lead to self-insight. The control group students were instructed to use 
flowcharts to imitate the teacher’s behavior until they achieved the goal. As a result, 
the majority of them exhibited single-loop reflection, indicating linear problem-
solving skills, which is consistent with the findings of Adams et al. (2003). In a nut-
shell, our study confirmed that a PDCA cycle strategy involving iterative reflection 
is an effective way to facilitate students’ learning from surface to depth in tangible 
programming (M. Wang et al., 2018), which has practical implications for educators 
to be able to select better and implement instructional strategies.

Some qualitative data were used to analyze students’ experience of the tangible 
programming process. The results showed that students presented a positive percep-
tion of learning tangible programming. This corresponds to the study of Sapounidis 
et  al. (2015) that students who use physical programming aids have a significant 
advantage in terms of motivation to learn. Moreover, the results of the interviews 
confirmed the conclusion that students can improve their programming skills by 
solving programming problems. For example, one student reported utilizing pseudo-
code and flowcharts to structure and systematize the assembly and programming of 
the robot. This may be because he can clearly plan programming operations, make 
abstract programming concepts gradually and concretely, and finally improve his 
programming skills. This speculation is consistent with the argument of Morgan and 
Stewart (2017). And, students emphasized that they liked the reflection session the 
most. As one student mentioned in the interview, he had transformed his fear of 
failure into a positive attitude towards continually trying and improving, increasing 
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his awareness of programming challenges. This finding supports the conclusions 
of (Widmer et al., 2009), who posited that students who engaged in regular reflec-
tion were more attuned to changes in their surroundings and the outcomes of their 
actions. To sum up, our study confirmed that the PDCA cycle strategy positively 
impacts the enhancement of programming skills and reflective thinking in primary 
school students’ tangible programming learning.

6 � Conclusion and limitation

6.1 � Conclusion

In this study, we aimed to explore the impact of the PDCA cycle strategy on chil-
dren’s programming skills and reflective thinking levels in the ‘Magic Card Robot’ 
course. The results showed that tangible programming facilitated students’ program-
ming skills development and the three dimensions of programming skills (sequential 
structure, conditional structure, repetitive structure). Further, compared with tradi-
tional teaching strategies, applying the PDCA cycle strategy in tangible program-
ming courses can achieve better learning outcomes. Specifically, PDCA is a four-in-
one mode of “(P)draw up a plan, (D)assemble and programming, (C)test and debug, 
display and reflect (A)” to create a closed loop of education. One of the critical links 
in the PDCA cycle chain is the test and debug, which is also the catalyst for the 
next cycle. The findings confirm that PDCA can promote the improvement of chil-
dren’s reflective thinking, which extends and strengthens prior research on develop-
ing reflective thinking levels in tangible programming. The findings can be served 
as a teaching case about implementing tangible programming for primary school 
teachers.

6.2 � Limitation and future direction

The following research limitations of this research should be noted. Firstly, 
the study only involved students in grade 2, and the sample size was not rich 
enough, which may cause bias in the results. In the future, it is necessary to 
extend the primary student group to the kindergarten group and demonstrate the 
application effect of the PDCA cycle strategy in a tangible programming course. 
Secondly, the study did not consider students’ accidental success in solving pro-
gramming problems through trial and error. Therefore, in the future, it is neces-
sary to add scaffolding to the PDCA cycle strategy to guide debugging practices 
(Chiu & Huang, 2015). Through a carefully designed failure task (Kapur, 2008), 
the teacher guides the students to reflect on what led to the error in the failed 
task. Students are asked to try implementing a programming solution to this 
error to reflect on and fix all mistakes to avoid repeating them. What is more, 
video coding technology can be used to record students’ actual actions to ana-
lyze children’s behavior patterns more accurately in the future.
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