
Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-023-12037-4

1 3

The effect of PDCA cycle strategy on pupils’ tangible
programming skills and reflective thinking

Xin Gong1  · Shufan Yu2 · Jie Xu3 · Ailing Qiao1 · Han Han4

Received: 10 April 2023 / Accepted: 5 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

*	 Shufan Yu
	 yushufan1993@gmail.com

Extended author information available on the last page of the article

Abstract
Tangible programming combines the advantages of object manipulation with program-
mable hardware, which plays an essential role in improving programming skills. As a
tool for ensuring the quality of projects and improving learning outcomes, the PDCA
cycle strategy is conducive to cultivating reflective thinking. However, there is still
a lack of empirical research on the effect of introducing the PDCA cycle strategy into
programming education. In this study, using a PDCA cycle strategy, in a four-pronged
model of “(P)draw up a plan, (D)assemble and programming, (C)test and debug, dis-
play and reflect (A),” and its effects on students’ programming skills and their reflec-
tive thinking were explored. There were 65 children between the ages of 7 and 8 years
participated in this study. There were 31 students in each of the experimental group and
the control group. A combination of qualitative and quantitative research methods was
adopted in this research, and students’ programming processes and results were observed
and counted. The study results revealed that after attending the ‘Magic Card Robot’
course that applied the PDCA cycle strategy, the experimental group students outper-
formed their counterparts in programming skills (sequencing, repetitive and conditional
structures). Meanwhile, the experimental group students’ reflective thinking levels were
higher than those of the control group students. These findings imply that tangible pro-
gramming education using the PDCA cycle strategy in the course has potential.

Keywords  Tangible programming · Programming skills · Reflective thinking ·
PDCA cycle strategy

1  Introduction

Programming is essential in improving computational thinking (Chen et al.,
2023) and problem-solving capabilities and is considered one of the ideal ways
to develop 21st-century skills (Hsu et al., 2018). In this digital era, programming

http://orcid.org/0000-0001-5962-0448
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-12037-4&domain=pdf

	 Education and Information Technologies

1 3

has permeated various aspects of our daily life (Iivari et al., 2020). In the edu-
cational field, programming instruction has flourished, particularly among young
pupils. However, due to the obscure syntax and logic of computer programming
languages (Demir, 2022), many novices struggle to code independently and solve
practical problems. This can lead to a lack of self-confidence and a decreased
interest in learning programming (Yang et al., 2023). Additionally, in most pro-
gramming classes, students interact primarily with computer screens (Alonso,
2020; Su et al., 2022), which is not an ideal way for young students with develop-
ing eyesight to learn programming (Marsh et al., 2016). As a result of the ongo-
ing conflict between children’s programming education and educational teach-
ing demands, tangible programming aids driven by tangible programming have
evolved as solutions to those issues (Wyeth, 2008).

Tangible programming combines the advantages of object manipulation with
programmable hardware that assists students in reducing cognitive load (Sapou-
nidis et al., 2015) and mastering extremely abstract concepts (Zhong et al., 2022).
In addition, tangible programming requires continuous iteration for dynamic qual-
ity improvement, which involves not only debugging the code but also designing
and assembling the robot. Reflective thinking plays a vital role in debugging and
problem-solving (Yildiz Durak, 2020), which also has been shown to help children
retain knowledge longer (Tan, 2021).

To ensure effective programming instruction, researchers have put various strat-
egies into practice, such as paired programming (Sun et al., 2022) and collabora-
tive learning (Lai & Wong, 2022). However, these strategies mostly emphasize the
organizational form of programming learning and neglect the value of reflection in
programming. Although some researchers have introduced reflection into teaching,
it is mainly utilized as a post-evaluation method (Lin et al., 2022; Shanley et al.,
2022) instead of an essential part of the teaching strategy. The Plan-Do-Check-
Action (PDCA) cycle proposed by Walter A. Shewhart (Deming, 2000) views
‘check’ as a crucial step that assures a spiral of high-quality learning by highlight-
ing the value of reflection, which offers a possibility to develop children’s reflec-
tive thinking in tangible programming education (Hellberg & Fauskanger, 2022).
In this regard, this paper aims to explore whether the integration of the PDCA cycle
strategy can facilitate the pupils’ tangible programming performance, a quasi-exper-
iment was conducted among Chinese elementary school students, and several instru-
ments were utilized to assess their programming skills and reflective thinking levels.

2 � Literature review

2.1 � Tangible programming learning

Tangible programming is a form of programming that uses programmable hardware
to generate human-computer interaction, and the process of running a physical object
can be described as program execution (Schweikardt & Gross, 2008). Moreover, tan-
gible programming provides real-time feedback based on the operation of the robot,
distributes programming errors across physical hardware, clarifies the relationship

1 3

Education and Information Technologies	

between code faults and tangible coding mechanisms (Silvis et al., 2022), and visu-
alizes and concretizes abstract concepts (Bers & Horn, 2010). According to Piaget’s
theory of cognitive development (Piaget, 1973), physical teaching aids are neces-
sary to help children understand abstract concepts during the concrete operations
stage (Burleson et al., 2018; Revelle et al., 2005) and to train their logical thinking
(Ackermann, 1996; Piaget, 1959). In this regard, tangible programming lowers chil-
dren’s threshold to learn complex computer syntax. Sapounidis et al. (2015, 2019)
have conducted several studies about tangible learning, and the results showed that it
was attractive to young girls and supported a high level of exploration. Additionally,
in Cejka et al. (2006)’s study, children as young as four years old could construct
simple robotic projects and understand abstract concepts by manipulating program-
mable hardware. The effectiveness of tangible programming in teaching has been
confirmed by many researchers.

As the use of tangible programming in children’s programming language learning
grows, the development of tangible programming aids has become a topic of interest
in elementary programming education (Fischer & Lau, 2006; Marshall, 2007). For
example, Perlman (1976) developed a Slot Machine that controls robot motion by
inserting cards. In Bers et al. (2019)’s study, Kibo is another tangible interface pro-
gramming tool that combines Lego blocks in the correct order. However, while the
diversity and practicality of tangible programming aids have significantly increased,
their usage in teaching practice has primarily focused on debugging the order of pro-
grammable hardware and less on improving the construction-based robot regarding
its design and assemble flaws (Silvis et al., 2022; Smith, 2009). In addition, exist-
ing studies on children’s robotics teaching environments did not make a clear dis-
tinction between issues of programming (e.g., omitting a command) and issues of
robot assembly (e.g., connecting a sensor to the wrong port) (Socratous, 2020). For
example, Bers et al. (2014) used construction-based robotics to train children’s com-
putational thinking and emphasized the need to set aside more time to think about
computer programs rather than spend time assembling robots. Moreover, in Feijoo-
Almonacid and Rodriguez-Garavito’s (2022) study, a robot Eli was provided that
was easy to assemble. Thus, children would focus more on debugging the robot’s
movement programming.

According to the abovementioned studies, fixing robot physical problems has not
received as much attention as debugging programming breakdowns. If their first for-
ays into programming, students rarely succeed in producing acceptable solutions (Chen
et al., 2020). Therefore, it is crucial to develop children’s programming skills by simul-
taneously grappling with bugs in the program and the physical aids (Yildiz Durak,
2020).

2.2 � Debugging and reflective thinking

According to Dewey’s empiricism (Yürük, 2007), reflective thinking is crucial
for effective problem-solving (Antonio, 2020; Bayrak & Usluel, 2011; Kizilkaya
& Aşkar, 2009), and the key to debugging is to continuously identify and correct
problems. For this reason, it is obvious that reflective thinking can help children’s

	 Education and Information Technologies

1 3

continuous debugging of code and robots in programming learning (Yildiz Durak,
2020), thereby enhancing programming skills. Specifically, in terms of debugging
programming code, reflective thinking can help identify complex problems (Altın &
Saracaloğlu, 2018; Liao & Wang, 2019), enabling children to manage their program-
ming process, question their decisions and actions, and explore alternative solutions
to improve their programs’ quality (Havenga et al., 2013). In terms of modifying
physical robots, assembling LEGO robots can be viewed as executing a design, and
reflective thinking is an integral part of this process (Hong & Choi, 2019; Walther
et al., 2011). Designers use reflective thinking to review previous experiences and
select appropriate solutions to reorganize and rearrange the design work (Salido &
Dasari, 2019). Therefore, reflective thinking is considered the key to achieving suc-
cessful debugging code and modifying robots in learning tangible programming.

However, most empirical studies on tangible programming have focused on the
development of computational thinking skills such as algorithmic thinking (Evripi-
dou et al., 2021) and problem-solving (Shim et al., 2017), and there is a dearth of
research focusing on reflective thinking (Angeli & Valanides, 2020; Cho & Lee,
2017; Hsieh et al., 2022). In terms of programming instructional approaches, exist-
ing studies cared more about passive post-reflective correction by children (Lin
et al., 2022; Malik et al., 2021; Shanley et al., 2022). Although some studies have
used reflective learning during the “check and compare final procedures” in the
teaching process (Burleson et al., 2018), they do not explicitly include reflection as a
specific part of the teaching strategy. Consequently, there is a need to explore teach-
ing strategies that can develop children’s iterative reflection ability, thereby provid-
ing the right ideas for the effective application of tangible programming aids and
teaching practices.

2.3 � Application of PDCA cycle strategy in programming

The PDCA cycle was proposed by Shewhart (1931), and it has been commonly used
as a problem-solving model in the field of quality management (Choo et al., 2007).
PDCA emphasizes continuous improvement learning and recognizes reflection as a
critical step (Hellberg & Fauskanger, 2022). The teaching strategies of PDCA can
be categorized into four stages. Firstly, in the “P (plan)” stage, solutions are devel-
oped based on the requirements and objectives of the problem. Secondly, in the “D
(do)” stage, the solutions are implemented. Thirdly, in the “C (check)” stage, the
implementation process is closely monitored to identify any problems. Lastly, in the
“A (act)” stage, the reasons for failure are analyzed, and the successes are used as a
standard to continuously enhance the quality of the product.

During instruction, the PDCA cycle strategy is commonly used for the man-
agement and monitoring of teaching quality. In the study of Walasek et al. (2011),
the PDCA cycle strategy was a valuable tool for ensuring the quality of e-learning
projects and improving student learning outcomes. Blagojević and Micić (2013)
applied the PDCA cycle in an intelligent learning system to enhance the quality of
students’ e-learning. Based on Taylor Principle and PDCA cycle theory, Wang and

1 3

Education and Information Technologies	

Guo (2021) proposed a student-centered inquiry’ Renewable Energy Sources (RES)
curriculum model to foster their creativity and problem-solving skills.

However, little study has focused on how PDCA is integrated into the field of
programming education, let alone investigating the effects of PDCA on reflective
thinking in primary school students during tangible programming learning. Accord-
ing to the aforementioned discussion, programming can be used to develop reflective
thinking, while the PDCA cycle can safeguard the quality of programming through
reflective learning. We, therefore, assumed that students’ programming skills and
reflective thinking might improve if teachers apply the PDCA cycle strategy to pro-
gramming instruction.

2.4 � The revised PDCA model

In the present study, we tried to apply the PDCA cycle to improve students’ pro-
gramming skills and reflective thinking. As such, a revised model was proposed,
as shown in Fig. 1. In this model, the process starts with P, representing drawing
up a solution plan, followed by D - assembling the robot and programming it with
programmable building blocks, and C - testing the results and debugging based on
feedback. The model starts from P and passes through the D and C stages, showing
improvement in multiple loops (single-loop, double-loop, triple-loop). Because tan-
gible programming is aimed at younger children, debugging may not happen auto-
matically, and careful and thoughtful educational guid-.

Fig. 1   The PDCA cycle model

	 Education and Information Technologies

1 3

ance is required (Gelter, 2003) for the quality of learning to be sustained in the
right direction. Thus, we based on the multiple loops PDCA cycle, which both
focuses on student learning and emphasizes the teachers’ guidance role for chil-
dren’s tangible programming. Finally, the process concludes with A, showing and
reflecting on the work.

2.5 � Research questions

Based on the abovementioned theoretical background and empirical studies, the
study aimed to explore the effectiveness of the PDCA cycle strategy in tangible pro-
gramming learning by comparing it with the traditional teaching strategy. Student’s
reflective thinking levels and programming skills were examined to answer the fol-
lowing questions:

RQ1: What are the differences in the effectiveness of traditional teaching strate-
gies and the PDCA cycle strategy in improving programming skills in the context
of tangible programming?
RQ2: What are the differences in the effectiveness of traditional teaching strate-
gies and the PDCA cycle strategy in improving reflective thinking levels in the
context of tangible programming?
RQ3: What are the students’ experiences of a course taught using the PDCA
cycle strategy in the context of tangible programming?

3 � Methodology

3.1 � Participants

A quasi-experimental design was adopted in this research, two classes with a total
of 65 students were randomly selected from four second-grade classes in S primary
school in Y city, Shandong province, China. Students were randomly dichotomized
into the control (N = 32) and experiment (N = 33) groups. After the treatment, three
students were eliminated from data analysis because two did not participate in the
test, and another did not complete the test. As a result, the final count included only
62 students who were tested. Out of these, 31 students were in the experimental
group (20 girls and 11 boys), and the remaining 31 were in the control group (20
girls and 11 boys). The mean age of the students was 8.63 years, with an age range
between 7 and 9 years. All students explicitly volunteered to participate in the exper-
iment and submitted their parents’ consent.

3.2 � Learning materials

The Magic Card Robot was chosen as the tangible programming aid for this
study. Magic Card Robot aids were entry-level STEAM educational robotics kits
explicitly designed for children aged 6–8 and widely used in young-adult tangible

1 3

Education and Information Technologies	

programming courses in most Asian countries, especially in Korea, China, and
some southeast Asia countries. As shown in Fig. 2, Magic Card Robot aids consist
of four parts: An instruction manual, Large building bricks, Electronic components
(Main controller, Motor, Touch sensor, LED), and Programming cards. Children
were encouraged to develop their programming skills using large building bricks
and electronic components such as a main controller, motor, touch sensor, and
LED. An instruction manual guided them to assemble various robot models. After
completion, they could use a swipe card reader to scan programming cards, which
were then scanned into the main board (as depicted in Fig. 3). By following this
process, children could learn programming in a step-by-step manner and gain mas-
tery of the three basic structures of sequential, repetitive, and conditional program-
ming. These structures did not involve variables or operations and were designed to
develop initial programming thinking and simple logical reasoning skills.

3.3 � Experiment procedure

Before the course, one regular teacher in charge of tangible programming instruc-
tion and two research assistants who were responsible for addressing students’
inquiries received five days of training to understand Magic Card Robot aids, the
‘Magic Card Robot’ course, and teaching methods (PDCA cycle strategy, tradi-
tional teaching strategy). The teaching experiment lasted eight weeks, with two
sessions per week (one 90-minute session), and the research process consisted of
three main phases (see Figs. 4 and 5).

Fig. 2   Magic Card Robot aids

Fig. 3   Programming card scanning sequence

	 Education and Information Technologies

1 3

In the first phase (weeks 1–2), students’ programming skills and reflective
thinking levels were examined. Then, students were provided basic training on
hardware related to Magic Card Robot aids, including the Main controller, Swipe
card reader, Motor, Touch sensor, and LED.

The course was implemented in the second phase (weeks 3–7). The learning
tasks were detailed in Fig. 4, which included a series of contents that integrate
basic physic mechanical knowledge and sequential, repetitive, and conditional pro-
gramming knowledge into real-world scientific applications. This course aimed
to guide students in writing logical processes and displayed scientific phenomena
using Magic Card Robot aids.

The experimental group used the PDCA cycle strategy, which consisted of four
steps:

P‑Plan (draw up a plan)  The teacher introduced the problem situation and assigned
the task. Students independently developed a solution (in the form of pseudo-code
and flowchart) based on the task requirements;

Fig. 4   Learning contents

1 3

Education and Information Technologies	

D‑Do (assemble and programming)  Students independently built the robot accord-
ing to the instruction manual and applied the card programming to manipulate the
robot movement;

C‑Check (test and debug)  Students observed the movement of the programmed robot
to judge whether the program input matched the expected output. When there was a
mismatch, students debugged the existing errors under the guidance of the teacher
(based on PDCA cycle iteration) to identify, analyze and correct the mistakes;

Fig. 5   Research procedure

	 Education and Information Technologies

1 3

A‑Action (display and reflect)  Students independently analyzed the reasons for fail-
ure, summarized their experiences, and shared their successful works through the
reflection iteration.

Subsequent three cycles were then built based on the experience from the previ-
ous cycle to enhance the quality of programming learning with continuous reflec-
tion and improvement. In the control group, a traditional teaching strategy was
employed. Firstly, the teacher introduced the problem situation and determined the
tasks to be completed, showing the general process of the solution. Next, the teacher
taught the steps and points of building the robot, and students followed the teacher
to apply the card programming to manipulate the robot movement. Finally, the stu-
dents completed the work, and the teacher summarized the course.

In the third phase (week 8), a post-test was conducted to evaluate the student’s
programming skills and reflective thinking levels. Each student was asked to com-
plete the test independently. Furthermore, six students were randomly selected for
semi-structured interviews, each lasting 8–10 min, and recorded with the permission
of the interviewees.

3.4 � Instruments

This study was performed by using a mixed-methods approach. The quantitative
data included the effectiveness of the application of the PDCA cycle strategy on stu-
dents’ programming skills and reflective thinking levels. These metrics were respec-
tively measured using the “Solve-It Tasks Programming Assessment” (Sullivan &
Bers, 2018) tool and the Reflective Thinking Assessment Questionnaire (Hong &
Choi, 2019). For the qualitative data, semi-structured interviews were used to under-
stand how students engaged in reflective learning and problem-solving during tangi-
ble programming.

3.4.1 � Solve‑It Tasks Programming Assessment

The Solve-It Tasks Programming Assessment (Solve-It Tasks) was developed by
the DevTech research group at Tufts University (Sullivan & Bers, 2018) to examine
young children’s knowledge of foundational programming concepts ranging from
sequencing, repetitive and conditional structures (Strawhacker & Bers, 2015). The
assessment consisted of five parts: Easy Sequencing, Hard Sequencing, Easy repeti-
tive, Hard repetitive, and Using the conditional.

This study utilized a series of “Solve-It Tasks” to assess students’ program-
ming skills. Solve-It 1 and 2 assessed students’ mastery of sequential structure
knowledge, which required students to write instructions for robot movements in
a specific sequence. Solve-It 3 and 4 focused on the repetitive structure, which
required students to incorporate instructions into more extended programs and
create subroutines. Solve-It 5 tested conditional structure by asking students to
write instructions for the robot to make choices based on specific conditions. Rel-
atively speaking, Solve-It 1 and 3 assessed basic programming concepts, while

1 3

Education and Information Technologies	

Solve-It 2, 4, and 5 evaluated more complex programming skills. The difference
between simple and complex tasks for sequential and repetitive structures was
determined by the number of cards needed to order the program correctly.

The test was conducted in week 8, where students were asked to listen to a story
about robots based on their familiar background and then try to create a program
using programming cards. The “Dinosaur” test case is shown in Fig. 6. After the
teacher finished reading the story once, students were asked to arrange the program
cards according to the story, and then the teacher repeated the story for students to
check and modify their programs.

The scoring rules for “Solve-It Tasks” were based on a two-stage scoring system
(Sullivan & Bers, 2018), including the position of ‘Begin’ and ‘End’ (0 to 3 points)
and the relative order of the action blocks (0 to 3 points). Each question was scored
on a scale of 0–6 based on the correctness of the student’s.

program, with a total of 30 points. The scoring was done by two research assis-
tants, and after the scoring was completed, they exchanged and reviewed each oth-
er’s work. If there was a discrepancy, they discussed it and came to a consensus
on the score. The Cronbach’s Alpha coefficient value of the Solve-It Tasks Pro-
gramming Assessment was 0.878, indicating a high level of reliability in the test
results.

3.4.2 � Reflective Thinking Assessment Questionnaire

The Reflective Thinking Assessment Questionnaire was developed based on
the scale of “Assessing Reflective Thinking in Solving Design Problems(ARTi
D)”(Hong & Choi, 2019). The finalized scale included three dimensions, which
were single-loop reflection, double-loop reflection, and triple-loop reflection, as
shown in Table 1.

Single-loop reflection involved reflecting on the effectiveness of actions taken
in order to achieve predetermined goals, focusing on identifying and correcting
errors. In contrast, double-loop reflection went beyond this by also questioning the
underlying assumptions and goals themselves and generating new goals that may
better align with desired outcomes (Flood & Romm, 1996). This iterative process

Fig. 6   “Dinosaur” test case

	 Education and Information Technologies

1 3

was similar to the PDCA cycle strategy. Finally, triple-loop reflection involved
critical reflection (Mezirow, 1990) on the presuppositions and values underlying
one’s programming process, as well as the larger social and educational context in
which it occurred, intending to create more just and equitable outcomes.

The Reflective Thinking Assessment Questionnaire consisted of 10 questions on a
5-point Likert rating (1 = never, 2 = seldom, 3 = sometimes, 4 = often, 5 = always). The
total score on the scale was 50 points. The total score indicated the level of reflective
thinking, and the questionnaire demonstrated high internal consistency with a Cron-
bach’s Alpha value of 0.803.

3.4.3 � Semi‑structured interviews

At the end of the course, a semi-structured interview was conducted among six stu-
dents randomly selected from the experimental group to understand their perceptions
and experiences of the programming class supported by the PDCA cycle. We aimed
to provide some qualitative evidence to support the quantitative results. The interview
questions were designed as follows.

Question 1: Do you enjoy the ‘Magic Card Robot’ course? What do you learn from
this course?
Question 2: Have you encountered any problems in the process of tangible program-
ming? If so, how did you solve it?
Question 3: Which part of the class do you think attracts you most?

4 � Results

4.1 � Programming skills

Students’ programming skills were reflected by their “Solve-It Task” perfor-
mance, consisting of three sub-dimensions (i.e., sequential, repetitive, conditional

Table 1   Reflective Thinking Assessment Questionnaire

Dimensions Item

Single-loop I evaluated whether the sequencing could be done effectively.
I checked whether the sequencing scheme could successfully get the robot to move.
I evaluated whether the sequencing allowed the robot to move correctly.

Double-loop I re-examined the sequencing scheme to identify existing problems.
I re-judged my previous understanding of the problem.
I checked why the new sequencing was critical to solving the problem.

Triple-loop I assessed that my sequencing was compliant.
I assessed that the new sequencing was the best solution.
I found ways or laws to get the robot moving.
I consider the ethical issues associated with tangible programming.

1 3

Education and Information Technologies	

Table 2   The paired-sample t-test result of the overall programming skills

**p < .01. CI = Confidence Interval

Group Pairs Paired Differences t Probability
(two-tailed)

Cohen’s d

Mean SD 95% CI of the difference

Lower Upper

Experimental Pre-test &
Post-test

-11.160 2.853 -12.208 -10.115 -21.782 0.000** 3.912

Control Pre-test &
Post-test

-6.520 4.265 -8.081 -4.952 -8.506 0.000** 1.528

Table 3   The paired-sample t-test on the two groups’ three sub-dimensions of the programming skills

**p < .01. CI = Confidence Interval

Variables Group Pairs Paired Differences t Probabil-
ity (two-
tailed)

Cohen’s d

Mean SD 95% CI of the
difference

Lower Upper

Sequential Experimental Pre-test &
Post-test

-2.400 0.724 -2.669 -2.138 -18.491 0.000** 3.321
Control -1.630 1.231 -2.081 -1.177 -7.366 0.000** 1.323

Repetitive Experimental Pre-test &
Post-test

-2.190 0.873 -2.514 -1.874 -13.998 0.000** 2.514
Control -1.030 1.103 -1.437 -0.628 -5.213 0.000** 0.936

Conditional Experimental Pre-test &
Post-test

-1.970 1.329 -2.455 -1.480 -8.245 0.000** 1.486
Control -1.190 1.515 -1.749 -0.638 -4.387 0.000** 0.788

structure) of five tasks. To answer question 1, we investigated students’ improve-
ment of programming skills over the experiment and compared the differences
between the two groups. Independent sample t-test showed that, in terms of stu-
dents’ prior programming skills, there was no significant difference (t = 0.684,
p > .05) between the experimental group (MD = 12.936, SD = 2.632) and the con-
trol group (MD = 12.484, SD = 2.567). Furthermore, students in both groups scored
approximately 13 out of 30 points, indicating ample room for improvement in their
programming skills.

We then compared their improvement in programming skills. Table 2 showed that
students in both groups significantly improved (experiment group: p < .05, Cohen’s
d = 3.912; control group: p < .05, Cohen’s d = 1.528).

We subsequently analyzed the differences between the three sub-dimensions. As
shown in Table 3, the paired-sample t-tests revealed significant improvements in
the three sub-dimensions of programming skills for both groups. Specifically, the
p-value for the sequential structure to conditional structure tasks were 0.000, 0.000,
and 0.000 in experiment groups.000, 0.000, 0.000 in control group. In general,

	 Education and Information Technologies

1 3

tangible programming has effectively developed primary school children’s program-
ming skills and three sub-dimensions of programming skills.

To compare the differences between the two groups’ Solve-It Tasks perfor-
mance, a one-way analysis of covariance (ANCOVA) was conducted by using
the pre-test scores as the covariate and experimental conditions as independents
independent variables. The F-test results for the product terms of experimental
conditions and pre-test Programming skills did not violate the homogeneity-of-
slopes assumption (F = 3.186, p > .05), indicating it was sensible to perform the
ANCOVA test.

Table 4 shows that, in terms of programming skills, the students in the exper-
imental group performed significantly better than those in the control group
(F = 46.851, p < .001, partial η2 = 0.443). The results demonstrated that using the
PDCA cycle strategy more effectively developed students’ programming skills than
the traditional teaching method.

After confirming the effect of the PDCA strategy on students’ overall pro-
gramming skills, we compared its three sub-dimensions (see Table 5). Specifi-
cally, the experimental group had a clear understanding of the sequential structure
(MD = 5.177) and could sequence the algorithmic instructions accurately. The
experimental group also scored higher on the repetitive structure (MD = 4.758),
showing that they could create simple repetitive programs, i.e., embedding repeti-
tive instructions in a series of program instructions and ensuring the integrity of the
instructions by repeating a core set of steps. The conditional structure required link-
ing specific actions to the conditions that make them necessary or desirable, among
which the experimental group performed a conditional test score of (MD = 4.226),
meaning that they were capable of mastering basic logical reasoning.

Table 4   The one-way ANCOVA result of the overall programming skills

***p < .001

Variables Group N Mean SD Adjusted
mean

Adjusted SE F Partial η2

Programming
skills

Experimental 31 24.100 2.561 24.065 0.519 46.851*** 0.443

Control 31 19.000 3.173 19.032

Table 5   The one-way ANCOVA on the two groups’ three sub-dimensions of the programming skills

***p < .001, **p < .01. SD = standard deviation; SE = standard error

Variables Group N Mean SD Adjusted mean Adjusted SE F Partial η2

Sequential Experimental 31 5.177 0.599 5.166 0.116 32.908*** 0.358
Control 31 4.210 0.693 4.221

Repetitive Experimental 31 4.758 0.644 4.760 0.127 37.363*** 0.388
Control 31 3.661 0.757 3.660

Conditional Experimental 31 4.226 1.117 4.218 0.203 10.931** 0.156
Control 31 3.258 1.125 3.266

1 3

Education and Information Technologies	

4.2 � Reflective thinking levels

To explore students’ reflective thinking levels, we assigned the dimension where
students scored highest as their individual reflective thinking levels. The results
showed that prior to the intervention, out of 62 students, 61.29% (n = 38) students
were at the single-loop reflection level, 24.19% (n = 15) students hit the double-loop
reflection level, and 14.52% (n = 9) students reached the triple-loop reflection level.
Moreover, students presented comparable levels in both groups (t = 0.121, p > .05).
The results indicated that their entry behavior was similar. Therefore, we continued
to do the following analysis.

The effect of the PDCA cycle strategy on reflective thinking levels was further
assessed. A one-way ANCOVA analysis was conducted by using the pre-test reflective
thinking levels as a covariate, the post-test reflective thinking level as an independent
variable, and experimental conditions as a dependent variable. The F-test results for
the pre-test and post-test reflective thinking levels and experimental conditions did not
violate the homogeneity-of-slopes assumption (F = 2.947, p > .05), indicating it was
sensible to perform the ANCOVA test. It was found that students in the experimental
group achieved significantly higher levels of reflective thinking than those in the con-
trol group (F = 39.376, p < .001, partial η2 = 0.036), as shown in Table 6.

Table 7 showed the students’ ARTiD’s reflective thinking levels before and after
the experiment. For the experimental group, 58.06% (n = 18) achieved double-loop
reflection, demonstrating that students who intervened by the PDCA cycle strategy
were enabled to revisit continually, reasonably question, and iterate on their already
defined goals or programs to achieve better learning outcomes. For students in the
control group, 51.61% (n = 16) were in single-loop reflection, where they sought
to match problems quickly and think linearly, completing tangible programming

Table 6   The one-way ANCOVA on the two groups’ reflective thinking levels survey

***p < .001

Variables Group N Mean SD Adjusted mean Adjusted SE F Partial η2

Reflective
thinking
levels

Experimental 31 43.169 3.567 43.156 0.812 39.376*** 0.400

Control 31 35.936 5.385 35.949

Table 7   Distribution rates of
students’ reflective thinking
levels in pre-test/post-test

the distribution rates refer to the proportion of students with these
reflective thinking levels (single-loop, double-loop, three-loop) in
the total number of students in this class

Dimensions Experimental (%) Control (%)

Pre-test Post-test Pre-test Post-test

Single-loop 54.84 16.13 64.52 51.61
Double-loop 32.26 58.06 19.35 29.03
Triple-loop 12.90 25.81 16.13 19.35

	 Education and Information Technologies

1 3

tasks. Therefore, the PDCA cycle strategy effectively improved students’ reflective
thinking.

4.3 � Students’ experience of PDCA cycle strategy and tangible programming
learning

To investigate the effect of PDCA strategy on students’ experience in a tangible pro-
gramming class. A semi-structured interview was subsequently conducted among
six students, who were randomly selected in the experimental group. “Their experi-
ence with the ‘Magic Card Robot’ course, the problems they encountered during
the course and how they solved them, and their favorite part of the course” were
interviewed.

Firstly, the experience of the ‘Magic Card Robot’ course. All six students said
they enjoyed the course and the learning style. For instance, student A indicated
that the ‘Magic Card Robot’ course combined the knowledge needed to learn with
practical applications and made me enjoy exploring the world of science. Student
B referred, “I loved the robots. In this way of learning, I have used my imagina-
tion to put together many different shapes of robots and then utilized the swipe card
programming function to make the robots move, which was very helpful for my pro-
gramming learning.”

Secondly, the problems encountered during the learning process and the
solutions. When students were asked about the difficulties they encountered in
the process of tangible programming, most students reported that on the first
attempt, the robot usually did not move forward as required. For example, stu-
dent C said, “I could not succeed on the first attempt, but instead needed to
keep checking and adjusting to get the robot to move.” Programming skills are
spiraling, requiring most students to go through multiple PDCA cycles and
improve their programming skills. In addition, Student E expressed, “When I
had trouble programming, I sought help from my teacher. The teacher care-
fully explained the meaning of each step, which helped me achieve my goal.” It
also reflects the necessity of providing targeted guidance during the testing and
debugging stage.

Finally, students’ favorite part of the course. The final display and reflect ses-
sion were favored by the students. Student F said, “Whenever the class ended, eve-
ryone presented their work individually and showed how to use repetitive structures
to make the robot program easy, which I will try to do in future classes.” It is clear
from this process that the PDCA cycle strategy prompts students to reflect more pro-
foundly to standardize and replicate successful experiences.

5 � Discussion

Programming skills are measured by the results of the programming tasks, which
mainly consist of sequential, conditional, and repetitive structure, as a way to exam-
ine students’ hands-on programming operational skills(Kuo & Hsu, 2020). The

1 3

Education and Information Technologies	

results showed that the programming skills of both groups improved significantly,
indicating that the students understood the concepts related to sequential, condi-
tional, and repetitive structure and had the programming practical operation abil-
ity. This finding was in line with the findings of Sullivan and Bers’s (2016) and
Cejka et al. (2006) studies. Furthermore, a comparison between groups revealed
that the experimental group performed better on the programming skills test and
scored higher on the task. In-depth analyzes of the reasons for the more signifi-
cant improvement of programming skills in the experimental group lay in the fact
that the PDCA cycle strategy has the same logic as solving programming problems
(Daminda Kuruppu, 2022). It also helped students understand and reflect on the
problems encountered in their learning, encouraged them to compare and analyze
the gap between achieved and expected goals, and discussed current shortcomings
and strategies for improvement. Students in the experimental group were guided
by the PDCA cycle strategy to improve their programming skills by understanding
problems, reflecting on improvements, and solving problems(Choo et al., 2007).
This finding reaffirmed the positive effect of tangible programming aids.

In terms of reflective thinking level, students in the experimental group per-
formed better than those in the control group, students in the experimental group
mostly presented a double-loop reflection level. One possible reason is that every
student was required to test and debug (The “Check” in PDCA) through an iterat-
ing process. In this case, they were more prone to critically examine the process and
results of their investigations and repeatedly adjust the programming sequence to see
if the problem was addressed correctly (Flood & Romm, 1996; Schepers & Wetzels,
2007). This finding also tallies with Staudinger (2013)’s study, which found that
reflection may lead to self-insight. The control group students were instructed to use
flowcharts to imitate the teacher’s behavior until they achieved the goal. As a result,
the majority of them exhibited single-loop reflection, indicating linear problem-
solving skills, which is consistent with the findings of Adams et al. (2003). In a nut-
shell, our study confirmed that a PDCA cycle strategy involving iterative reflection
is an effective way to facilitate students’ learning from surface to depth in tangible
programming (M. Wang et al., 2018), which has practical implications for educators
to be able to select better and implement instructional strategies.

Some qualitative data were used to analyze students’ experience of the tangible
programming process. The results showed that students presented a positive percep-
tion of learning tangible programming. This corresponds to the study of Sapounidis
et al. (2015) that students who use physical programming aids have a significant
advantage in terms of motivation to learn. Moreover, the results of the interviews
confirmed the conclusion that students can improve their programming skills by
solving programming problems. For example, one student reported utilizing pseudo-
code and flowcharts to structure and systematize the assembly and programming of
the robot. This may be because he can clearly plan programming operations, make
abstract programming concepts gradually and concretely, and finally improve his
programming skills. This speculation is consistent with the argument of Morgan and
Stewart (2017). And, students emphasized that they liked the reflection session the
most. As one student mentioned in the interview, he had transformed his fear of
failure into a positive attitude towards continually trying and improving, increasing

	 Education and Information Technologies

1 3

his awareness of programming challenges. This finding supports the conclusions
of (Widmer et al., 2009), who posited that students who engaged in regular reflec-
tion were more attuned to changes in their surroundings and the outcomes of their
actions. To sum up, our study confirmed that the PDCA cycle strategy positively
impacts the enhancement of programming skills and reflective thinking in primary
school students’ tangible programming learning.

6 � Conclusion and limitation

6.1 � Conclusion

In this study, we aimed to explore the impact of the PDCA cycle strategy on chil-
dren’s programming skills and reflective thinking levels in the ‘Magic Card Robot’
course. The results showed that tangible programming facilitated students’ program-
ming skills development and the three dimensions of programming skills (sequential
structure, conditional structure, repetitive structure). Further, compared with tradi-
tional teaching strategies, applying the PDCA cycle strategy in tangible program-
ming courses can achieve better learning outcomes. Specifically, PDCA is a four-in-
one mode of “(P)draw up a plan, (D)assemble and programming, (C)test and debug,
display and reflect (A)” to create a closed loop of education. One of the critical links
in the PDCA cycle chain is the test and debug, which is also the catalyst for the
next cycle. The findings confirm that PDCA can promote the improvement of chil-
dren’s reflective thinking, which extends and strengthens prior research on develop-
ing reflective thinking levels in tangible programming. The findings can be served
as a teaching case about implementing tangible programming for primary school
teachers.

6.2 � Limitation and future direction

The following research limitations of this research should be noted. Firstly,
the study only involved students in grade 2, and the sample size was not rich
enough, which may cause bias in the results. In the future, it is necessary to
extend the primary student group to the kindergarten group and demonstrate the
application effect of the PDCA cycle strategy in a tangible programming course.
Secondly, the study did not consider students’ accidental success in solving pro-
gramming problems through trial and error. Therefore, in the future, it is neces-
sary to add scaffolding to the PDCA cycle strategy to guide debugging practices
(Chiu & Huang, 2015). Through a carefully designed failure task (Kapur, 2008),
the teacher guides the students to reflect on what led to the error in the failed
task. Students are asked to try implementing a programming solution to this
error to reflect on and fix all mistakes to avoid repeating them. What is more,
video coding technology can be used to record students’ actual actions to ana-
lyze children’s behavior patterns more accurately in the future.

1 3

Education and Information Technologies	

Authors’ contributions  Xin Gong: Conceptualization, Methodology, Data curation, Formal analysis, Pro-
ject administration, Writing – original draft, Writing – review & editing. Shufan Yu: Conceptualization,
Methodology, Writing – review & editing. Jie Xu: Formal analysis, Writing – review & editing. Ailing
Qiao: Funding acquisition, Supervision, Resources, Writing – review & editing. Han Han: Investigation.

Funding  This work was supported by the 2022 Key research project of the Chinese Minis-try of Educa-
tion (DCA220449) and the Beijing Education Science Plan 2021 Key Project (CDAA 21048).

Data availability  The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Declarations 

Ethics approval  All procedures performed in the study involving human participants were in accordance
with the World Medical Association Declaration of Helsinki. The research participants and their parents
agreed to participate in the study and their complete anonymity was ensured.

Competing interests  The authors declare that they have no conflict of interest.

References

Ackermann, E. K. (1996). Perspective-taking and object construction: Two keys to learning. In Y. Kafai & M.
Resnick (Eds.), Constructionism in practice (pp. 1, 25-37). Lawrence Erlbaum Associates, Inc.

Adams, R. S., Turns, J., & Atman, C. J. (2003). Educating effective engineering designers: The role
of reflective practice. Design Studies, 24(3), 275–294. https://​doi.​org/​10.​1016/​S0142-​694X(02)​
00056-X

Alonso, J. M. (2020). Teaching explainable Artificial Intelligence to High School Students. International
Journal of Computational Intelligence Systems, 13(1), 974. https://​doi.​org/​10.​2991/​ijcis.d.​200715.​
003

Altın, M., & Saracaloğlu, A. S. (2018). Creative, critical and reflective thinking: Similarities-differences.
Uluslararası Güncel Eğitim Araştırmaları Dergisi (UGEAD), 4(1), 1–9.

Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educa-
tional robotics: An interaction effect between gender and scaffolding strategy. Computers in Human
Behavior, 105, 105954. https://​doi.​org/​10.​1016/j.​chb.​2019.​03.​018

Antonio, R. P. (2020). Developing students’ reflective thinking skills in a Metacognitive and Argument-
Driven Learning Environment. International Journal of Research in Education and Science, 6(3),
467–483. https://​doi.​org/​10.​46328/​ijres.​v6i3.​1096

Bayrak, F., & Usluel, Y. K. (2011). The effect of blogging on reflective thinking skill. Hacettepe Univer-
stiy Journal of Education, 40, 93–104.

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting developmental
assumptions through new technologies. High-Tech Tots: Childhood in a Digital World, 49, 49–70.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinker-
ing: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–
157. https://​doi.​org/​10.​1016/j.​compe​du.​2013.​10.​020

Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Pro-
moting positive learning experiences in childhood classrooms. Computers & Education, 138,
130–145. https://​doi.​org/​10.​1016/j.​compe​du.​2019.​04.​013

Blagojević, M., & Micić, Ž. (2013). A web-based intelligent report e-learning system using data min-
ing techniques. Computers & Electrical Engineering, 39(2), 465–474. https://​doi.​org/​10.​1016/j.​
compe​leceng.​2012.​09.​011

Burleson, W. S., Harlow, D. B., Nilsen, K. J., Perlin, K., Freed, N., Jensen, C. N., Lahey, B., Lu, P., &
Muldner, K. (2018). Active learning environments with robotic tangibles:Children’s physical and

https://doi.org/10.1016/S0142-694X(02)00056-X
https://doi.org/10.1016/S0142-694X(02)00056-X
https://doi.org/10.2991/ijcis.d.200715.003
https://doi.org/10.2991/ijcis.d.200715.003
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.46328/ijres.v6i3.1096
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1016/j.compedu.2019.04.013
https://doi.org/10.1016/j.compeleceng.2012.09.011
https://doi.org/10.1016/j.compeleceng.2012.09.011

	 Education and Information Technologies

1 3

virtual spatial programming experiences. IEEE Transactions on Learning Technologies, 11(1),
96–106. https://​doi.​org/​10.​1109/​TLT.​2017.​27240​31

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: using robotics to motivate
math, science, and engineering literacy in elementary school. International Journal of Engineer-
ing Education, 22(4), 711–722.

Chen, H. M., Nguyen, B. A., Yan, Y. X., & Dow, C. R. (2020). Analysis of learning behavior in an
Automated Programming Assessment Environment: A Code Quality Perspective. IEEE Access:
Practical Innovations, Open Solutions, 8, 167341–167354. https://​doi.​org/​10.​1109/​ACCESS.​
2020.​30241​02

Chen, H. E., Sun, D., Hsu, T. C., Yang, Y., & Sun, J. (2023). Visualising trends in computational
thinking research from 2012 to 2021: A bibliometric analysis. Thinking Skills and Creativity, 47,
101224. https://​doi.​org/​10.​1016/j.​tsc.​2022.​101224

Chiu, C. F., & Huang, H. Y. (2015). Guided Debugging Practices of Game based programming for
novice programmers. International Journal of Information and Education Technology, 5(5),
343–347. https://​doi.​org/​10.​7763/​IJIET.​2015.​V5.​527

Cho, Y., & Lee, Y. (2017). Possibility of improving computational thinking through activity based
learning. Journal of Theoretical and Applied Information Technology, 95(18), 4385–4393.
https://​www.​jatit.​org/​volum​es/​Vol95​No18/​6Vol9​5No18.​pdf. Accessed 14 Jan 2023.

Choo, A. S., Linderman, K. W., & Schroeder, R. G. (2007). Method and context perspectives on learn-
ing and knowledge creation in quality management. Journal of Operations Management, 25(4),
918–931. https://​doi.​org/​10.​1016/j.​jom.​2006.​08.​002

Daminda Kuruppu, K. A. D. (2022). Education Reform as a platform to improve interactions of the
Engineering Students during Online Teaching and learning at higher education amidst Covid-
19 pandemic. International Journal of Educational Reform, 31(2), 202–217. https://​doi.​org/​10.​
1177/​10567​87921​10423​27

Deming, W. E. (2000). The new economics, for industry, government, education (2nd ed.). MIT Press.
Demir, F. (2022). The effect of different usage of the educational programming language in program-

ming education on the programming anxiety and achievement. Education and Information Tech-
nologies, 27(3), 4171–4194. https://​doi.​org/​10.​1007/​s10639-​021-​10750-6

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, A. (2021). Introducing algo-
rithmic thinking and sequencing using tangible Robots. IEEE Transactions on Learning Tech-
nologies, 14(1), 93–105. https://​doi.​org/​10.​1109/​TLT.​2021.​30580​60

Feijoo-Almonacid, A., & Rodriguez-Garavito, C. H. (2022). Hardware-Software platform for the
development of STEM skills. IEEE Revista Iberoamericana de Tecnologias Del Aprendizaje,
17(2), 170–177. https://​doi.​org/​10.​1109/​RITA.​2022.​31669​69

Fischer, T., & Lau, W. (2006, June). Marble track music sequencers for children. Proceedings of the
2006 Conference on Interaction Design and Children, (pp.141–144). https://​doi.​org/​10.​1145/​
11390​73.​11391​08

Flood, R. L., & Romm, N. R. A. (1996). Plurality revisited: Diversity management and triple loop
learning. Systems Practice, 9(6), 587–603. https://​doi.​org/​10.​1007/​BF021​69215

Gelter, H. (2003). Why is reflective thinking uncommon. Reflective Practice, 4(3), 337–344. https://​
doi.​org/​10.​1080/​14623​94032​00011​2237

Havenga, M., Breed, B., Mentz, E., Govender, D., Govender, I., Dignum, F., & Dignum, V. (2013).
Metacognitive and problem-solving skills to Promote Self-Directed Learning in Computer
Programming:Teachers’ Experiences. SA-eDUC Journal, 10(2), 1–14.

Hellberg, R., & Fauskanger, E. (2022). Learning of quality improvement theory – experiences with
reflective learning from a student perspective. International Journal of Lean Six Sigma. https://​doi.​
org/​10.​1108/​IJLSS-​04-​2022-​0090

Hong, Y. C., & Choi, I. (2019). Relationship between student designers’ reflective thinking and their
design performance in bioengineering project: Exploring reflection patterns between high and low
performers. Educational Technology Research and Development, 67(2), 337–360. https://​doi.​org/​10.​
1007/​s11423-​018-​9618-6

Hsieh, M. C., Pan, H. C., Hsieh, S. W., Hsu, M. J., & Chou, S. W. (2022). Teaching the Concept of
Computational thinking: A STEM-Based program with tangible Robots on Project-Based learning
courses. Frontiers in Psychology, 12, 828568. https://​doi.​org/​10.​3389/​fpsyg.​2021.​828568

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking:
Suggestions based on a review of the literature. Computers & Education, 126, 296–310. https://​doi.​
org/​10.​1016/j.​compe​du.​2018.​07.​004

https://doi.org/10.1109/TLT.2017.2724031
https://doi.org/10.1109/ACCESS.2020.3024102
https://doi.org/10.1109/ACCESS.2020.3024102
https://doi.org/10.1016/j.tsc.2022.101224
https://doi.org/10.7763/IJIET.2015.V5.527
https://www.jatit.org/volumes/Vol95No18/6Vol95No18.pdf
https://doi.org/10.1016/j.jom.2006.08.002
https://doi.org/10.1177/10567879211042327
https://doi.org/10.1177/10567879211042327
https://doi.org/10.1007/s10639-021-10750-6
https://doi.org/10.1109/TLT.2021.3058060
https://doi.org/10.1109/RITA.2022.3166969
https://doi.org/10.1145/1139073.1139108
https://doi.org/10.1145/1139073.1139108
https://doi.org/10.1007/BF02169215
https://doi.org/10.1080/1462394032000112237
https://doi.org/10.1080/1462394032000112237
https://doi.org/10.1108/IJLSS-04-2022-0090
https://doi.org/10.1108/IJLSS-04-2022-0090
https://doi.org/10.1007/s11423-018-9618-6
https://doi.org/10.1007/s11423-018-9618-6
https://doi.org/10.3389/fpsyg.2021.828568
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004

1 3

Education and Information Technologies	

Iivari, N., Sharma, S., & Ventä-Olkkonen, L. (2020). Digital transformation of everyday life – how
COVID-19 pandemic transformed the basic education of the young generation and why information
management research should care? International Journal of Information Management, 55, 102183.
https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2020.​102183

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424. https://​doi.​org/​10.​1080/​
07370​00080​22126​69

Kizilkaya, G., & Aşkar, P. (2009). The development of a reflective thinking skill scale towards problem
solving. Eğitim ve Bilim, 34(154), 82–92.

Kuo, W. C., & Hsu, T. C. (2020). Learning computational thinking without a computer: How computa-
tional participation happens in a computational thinking Board game. The Asia-Pacific Education
Researcher, 29(1), 67–83. https://​doi.​org/​10.​1007/​s40299-​019-​00479-9

Lai, X., & Wong, G. K. (2022). Collaborative versus individual problem solving in computational think-
ing through programming: A meta-analysis. British Journal of Educational Technology, 53(1), 150–
170. https://​doi.​org/​10.​1111/​bjet.​13157

Liao, H. C., & Wang, Y. H. (2019). Reflective thinking scale for Healthcare Students and Providers—
Chinese version. Social Behavior and Personality: An International Journal, 47(2), 1–10. https://​
doi.​org/​10.​2224/​sbp.​7671

Lin, Y. T., Yeh, M. K. C., & Tan, S. R. (2022). Teaching programming by revealing thinking process:
Watching experts’ live coding videos with reflection annotations. IEEE Transactions on Education,
65(4), 617–627. https://​doi.​org/​10.​1109/​TE.​2022.​31558​84

Malik, S. I., Tawafak, R. M., & Shakir, M. (2021). Aligning and assessing teaching approaches with
SOLO taxonomy in a computer programming course. International Journal of Information and
Communication Technology Education, 17(4), 1–15. https://​doi.​org/​10.​4018/​IJICTE.​20211​001.​oa5

Marsh, J., Plowman, L., Yamada-Rice, D., Bishop, J., & Scott, F. (2016). Digital play: A new classifica-
tion. Early Years, 36(3), 242–253. https://​doi.​org/​10.​1080/​09575​146.​2016.​11676​75

Marshall, P. (2007). Do tangible interfaces enhance learning? Proceedings of the 1st International Conference
on Tangible and Embedded Interaction (TEI’ 07), 163–170. https://​doi.​org/​10.​1145/​12269​69.​12270​04

Mezirow, J. (1990). Fostering critical reflection in adulthood (pp. 1–20). Jossey-Bass Publishers.
Morgan, S. D., & Stewart, A. C. (2017). Continuous improvement of Team assignments: Using a web-

based Tool and the Plan-Do-Check-act cycle in design and redesign: Continuous improvement of
Team assignments. Decision Sciences Journal of Innovative Education, 15(3), 303–324. https://​doi.​
org/​10.​1111/​dsji.​12132

Perlman, R. (1976). Using computer technology to provide a creative learning environment for preschool chil-
dren (MIT AI lab memo no. 360/Logo memo, N. 24) [MIT AI Lab]. https://​hdl.​handle.​net/​1721.1/​5784

Piaget, J. (1959). The language and thought of the child (3d ed). Humanities Press.
Piaget, J. (1973). The child and reality: Problems of genetic psychology. Grossman.
Revelle, G., Zuckerman, O., Druin, A., & Bolas, M. (2005). Tangible user interfaces for children. CHI

’05 Extended Abstracts on Human Factors in Computing Systems, 2051–2052. https://​doi.​org/​10.​
1145/​10568​08.​10570​95

Salido, A., & Dasari, D. (2019). The analysis of students’ reflective thinking ability viewed by students’
mathematical ability at senior high school. Journal of Physics: Conference Series, 1157(2), 022121.
https://​doi.​org/​10.​1088/​1742-​6596/​1157/2/​022121

Sapounidis, T., Demetriadis, S., & Stamelos, I. (2015). Evaluating children performance with graphi-
cal and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1), 225–237.
https://​doi.​org/​10.​1007/​s00779-​014-​0774-3

Sapounidis, T., Stamovlasis, D., & Demetriadis, S. (2019). Latent class modeling of children’s preference
profiles on tangible and graphical Robot Programming. IEEE Transactions on Education, 62(2),
127–133. https://​doi.​org/​10.​1109/​TE.​2018.​28763​63

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating
subjective norm and moderation effects. Information & Management, 44(1), 90–103. https://​doi.​org/​
10.​1016/j.​im.​2006.​10.​007

Schweikardt, E., & Gross, M. D. (2008). The robot is the program: Interacting with roBlocks. Proceed-
ings of the 2nd International Conference on Tangible and Embedded Interaction (pp.167–168).
https://​doi.​org/​10.​1145/​13473​90.​13474​27

Shanley, N., Martin, F., Hite, N., Perez-Quinones, M., Ahlgrim-Delzell, L., Pugalee, D., & Hart, E.
(2022). Teaching programming online: Design, Facilitation and Assessment Strategies and Rec-
ommendations for High School Teachers. TechTrends, 66(3), 483–494. https://​doi.​org/​10.​1007/​
s11528-​022-​00724-x

https://doi.org/10.1016/j.ijinfomgt.2020.102183
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1007/s40299-019-00479-9
https://doi.org/10.1111/bjet.13157
https://doi.org/10.2224/sbp.7671
https://doi.org/10.2224/sbp.7671
https://doi.org/10.1109/TE.2022.3155884
https://doi.org/10.4018/IJICTE.20211001.oa5
https://doi.org/10.1080/09575146.2016.1167675
https://doi.org/10.1145/1226969.1227004
https://doi.org/10.1111/dsji.12132
https://doi.org/10.1111/dsji.12132
https://hdl.handle.net/1721.1/5784
https://doi.org/10.1145/1056808.1057095
https://doi.org/10.1145/1056808.1057095
https://doi.org/10.1088/1742-6596/1157/2/022121
https://doi.org/10.1007/s00779-014-0774-3
https://doi.org/10.1109/TE.2018.2876363
https://doi.org/10.1016/j.im.2006.10.007
https://doi.org/10.1016/j.im.2006.10.007
https://doi.org/10.1145/1347390.1347427
https://doi.org/10.1007/s11528-022-00724-x
https://doi.org/10.1007/s11528-022-00724-x

	 Education and Information Technologies

1 3

Shewhart, W. A. (1931). Economic control of quality of manufactured product. D. Van Nostrand.
Shim, J., Kwon, D., & Lee, W. (2017). The Effects of a Robot Game Environment on Computer Program-

ming Education for Elementary School Students. IEEE Transactions on Education, 60(2), 164–172.
https://​doi.​org/​10.​1109/​TE.​2016.​26222​27

Silvis, D., Lee, V. R., Clarke-Midura, J., & Shumway, J. F. (2022). The technical matters: Young children
debugging (with) tangible coding toys. Information and Learning Sciences, 123(9/10), 577–600.
https://​doi.​org/​10.​1108/​ILS-​12-​2021-​0109

Smith, W. (2009). Theatre of Use: A Frame analysis of Information Technology demonstrations. Social
Studies of Science, 39(3), 449–480. https://​doi.​org/​10.​1177/​03063​12708​101978

Socratous, C., & Ioannou, A. (2020). Common errors, successful debugging, and engagement during
block-based programming using educational robotics in elementary education. 14th International
Conference of the Learning Sciences, 2, 991–998. https://​doi.​org/​10.​22318/​icls2​020.​991

Staudinger, U. M. (2013). The need to distinguish personal from general wisdom: a short history and
empirical evidence. In M. Ferrari & N. M. Weststrate (Eds.), The Scientific Study of Personal Wis-
dom (pp.3–19). Springer Netherlands. https://​doi.​org/​10.​1007/​978-​94-​007-​7987-7_1

Strawhacker, A., & Bers, M. U. (2015). I want my robot to look for food”: Comparing Kindergartner’s
programming comprehension using tangible, graphic, and hybrid user interfaces. Interna-
tional Journal of Technology and Design Education, 25(3), 293–319. https://​doi.​org/​10.​1007/​
s10798-​014-​9287-7

Su, Y. S., Shao, M., & Zhao, L. (2022). Effect of mind mapping on creative thinking of children in
scratch visual programming education. Journal of Educational Computing Research, 60(4), 906–
929. https://​doi.​org/​10.​1177/​07356​33121​10533​83

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: Learning outcomes from
an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of
Technology and Design Education, 26(1), 3–20. https://​doi.​org/​10.​1007/​s10798-​015-​9304-5

Sullivan, A., & Bers, M. U. (2018). Dancing robots: Integrating art, music, and robotics in Singapore’s
early childhood centers. International Journal of Technology and Design Education, 28(2), 325–
346. https://​doi.​org/​10.​1007/​s10798-​017-​9397-0

Sun, C., Shute, V. J., Stewart, A. E. B., Beck-White, Q., Reinhardt, C. R., Zhou, G., Duran, N., &
D’Mello, S. K. (2022). The relationship between collaborative problem solving behaviors and solu-
tion outcomes in a game-based learning environment. Computers in Human Behavior, 128, 107120.
https://​doi.​org/​10.​1016/j.​chb.​2021.​107120

Tan, S. Y. (2021). Reflective learning? Understanding the student perspective in higher education. Educa-
tional Research, 63(2), 229–243. https://​doi.​org/​10.​1080/​00131​881.​2021.​19173​03

Walasek, T. A., Kucharczyk, Z., & Morawska-Walasek, D. (2011). Assuring quality of an e-learning pro-
ject through the PDCA approach. Archives of Materials Science and Engineering, 48(1), 56–61.

Walther, J., Sochacka, N. W., & Kellam, N. N. (2011). Emotional Indicators as a Way to Initiate Student
Reflection in Engineering Programs. In 2011 ASEE Annual Conference & Exposition Proceedings
(pp.22–557). https://​doi.​org/​10.​18260/1-​2--​17838

Wang, X., & Guo, L. (2021). How to promote University students to innovative use renewable energy? An
Inquiry-Based Learning Course Model. Sustainability, 13(3), 1418. https://​doi.​org/​10.​3390/​su130​31418

Wang, M., Yuan, B., Kirschner, P. A., Kushniruk, A. W., & Peng, J. (2018). Reflective learning with
complex problems in a visualization-based learning environment with expert support. Computers in
Human Behavior, 87, 406–415. https://​doi.​org/​10.​1016/j.​chb.​2018.​01.​025

Widmer, P. S., Schippers, M. C., & West, M. A. (2009). Recent developments in reflexivity research:A
review. Psychology of Everyday Activity, 2(2), 2–11.

Wyeth, P. (2008). How young children learn to program with Sensor, Action, and Logic Blocks. The
Journal of the Learning Sciences, 17(4), 517–550. https://​doi.​org/​10.​1080/​10508​40080​23950​69

Yang, W., Ng, D. T. K., & Su, J. (2023). The impact of story-inspired programming on preschool chil-
dren’s computational thinking: A multi-group experiment. Thinking Skills and Creativity, 47,
101218. https://​doi.​org/​10.​1016/j.​tsc.​2022.​101218

Yildiz Durak, H. (2020). The Effects of using different tools in programming teaching of secondary
School students on Engagement, computational thinking and reflective thinking skills for Prob-
lem solving. Technology Knowledge and Learning, 25(1), 179–195. https://​doi.​org/​10.​1007/​
s10758-​018-​9391-y

Yürük, T. (2007). John Dewey, how we think, a restatement of the relation of reflective thinking to the
educative process. Ankara Üniversitesi İlahiyat Fakültesi Dergisi, 48(1), 185–188. https://​doi.​org/​
10.​1501/​Ilhfak_​00000​00937

https://doi.org/10.1109/TE.2016.2622227
https://doi.org/10.1108/ILS-12-2021-0109
https://doi.org/10.1177/0306312708101978
https://doi.org/10.22318/icls2020.991
https://doi.org/10.1007/978-94-007-7987-7_1
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1177/07356331211053383
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1007/s10798-017-9397-0
https://doi.org/10.1016/j.chb.2021.107120
https://doi.org/10.1080/00131881.2021.1917303
https://doi.org/10.18260/1-2--17838
https://doi.org/10.3390/su13031418
https://doi.org/10.1016/j.chb.2018.01.025
https://doi.org/10.1080/10508400802395069
https://doi.org/10.1016/j.tsc.2022.101218
https://doi.org/10.1007/s10758-018-9391-y
https://doi.org/10.1007/s10758-018-9391-y
https://doi.org/10.1501/Ilhfak_0000000937
https://doi.org/10.1501/Ilhfak_0000000937

1 3

Education and Information Technologies	

Zhong, B., Xia, L., & Su, S. (2022). Effects of programming tools with different degrees of embodi-
ment on learning Boolean operations. Education and Information Technologies, 27(5), 6211–6231.
https://​doi.​org/​10.​1007/​s10639-​021-​10884-7

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Xin Gong1  · Shufan Yu2 · Jie Xu3 · Ailing Qiao1 · Han Han4

 *	 Ailing Qiao
	 Qiaoal@126.com

	 Xin Gong
	 Gongxinjyjs@163.com

	 Jie Xu
	 xjhbsfdx@163.com

	 Han Han
	 hanhan00620@163.com

1	 College of Education, Capital Normal University, 105 West Third Ring North Road, Haidian
District, Beijing 100048, China

2	 School of Educational Information Technology, Faculty of Artificial Intelligence in Education,
Central China Normal University, Wuhan, Hubei 430079, China

3	 College of Education, Zhejiang University, 866 Yuhangtang Road, Xihu District, Zijingang
Campus, Hangzhou 310058, China

4	 Faculty of Education, Beijing Normal University, 19 Xinjiekou Outer Street, Haidian District,
Beijing 100875, China

https://doi.org/10.1007/s10639-021-10884-7
http://orcid.org/0000-0001-5962-0448

	The effect of PDCA cycle strategy on pupils’ tangible programming skills and reflective thinking
	Abstract
	1 Introduction
	2 Literature review
	2.1 Tangible programming learning
	2.2 Debugging and reflective thinking
	2.3 Application of PDCA cycle strategy in programming
	2.4 The revised PDCA model
	2.5 Research questions

	3 Methodology
	3.1 Participants
	3.2 Learning materials
	3.3 Experiment procedure
	3.4 Instruments
	3.4.1 Solve-It Tasks Programming Assessment
	3.4.2 Reflective Thinking Assessment Questionnaire
	3.4.3 Semi-structured interviews

	4 Results
	4.1 Programming skills
	4.2 Reflective thinking levels
	4.3 Students’ experience of PDCA cycle strategy and tangible programming learning

	5 Discussion
	6 Conclusion and limitation
	6.1 Conclusion
	6.2 Limitation and future direction

	References

